Смекни!
smekni.com

Пересечение кривых поверхностей (стр. 2 из 2)

Положим, что надо построить проекции прямой, проходящей через точку В на оси проекций и расположенной под углом φ1 по отношению к плоскости π1 и под углом φ2 к плоскости π 2. Известно, что для прямой общего положения φ1+φ2<90градусов.

Геометрическим местом прямых, проходящих через данную точку и составляющих с плоскостью π1 угол φ1, является коническая поверхность вращения, вершина которой находится в данной точке, а образующие составляют с плоскостью π1 угол φ1.

РИС. 2

Точно также геометрическим местом прямых, проходящих через данную точку и составляющих с плоскостью π2 угол φ2, является коническая поверхность вращения, вершина которой находится в данной точке, а образующие составляют с плоскостью π2 угол φ2.

Очевидно, искомая прямая должна одновременно принадлежать поверхностям обоих конусов, имеющих общую вершину в данной точке, т.е. должна быть линией их пересечения – общей их образующей. Мы получим восемь лучей, выходящих из точки В, отвечающих поставленным условиям (четыре прямых).

На рисунке 3 выполнено построение одного из этих лучей. Первый конус определяется образующей ВА1 и осью, перпендикулярной к плоскости π1, а второй конус – образующей ВА2 и осью, перпендикулярной к плоскости π2. Для построения искомой прямой имеется пока лишь точка В – общая вершина конусов. Вторую точку – точку К – общую для поверхностей этих конусов, мы находим при помощи сферы с центром в точке В.

РИС. 3

Другим примером, когда в процессе некоторого построения используется свойство пересечения двух конических поверхностей с общей вершиной по общей для них прямой линии – образующей, служит построение образующих линейчатой поверхности, называемой цилиндром с тремя направляющими. Положим (рис.4), что в числе направляющих одна прямая АВ и две кривые линии. Если взять точку (К) на прямой направляющей и принять её в качестве общей вершины вспомогательных конических поверхностей, для которых данные кривые служат направляющими, то прямая пересечения этих конических поверхностей, проходя через их вершину, пересечет и их направляющие, то есть окажется прямолинейной образующей цилиндра с тремя направляющими. Очевидно, надо взять ряд точек заданной прямой и выполнить для каждой из них указанное построение, что даст ряд образующих цилиндра с тремя направляющими.

Если для этой поверхности все три направляющие кривые, то указанный способ построения остаётся таким же: точки, служащие вершинами для вспомогательных конических поверхностей, берутся на одной из данных кривых.

2. При взаимном пересечении поверхностей вращения второго порядка получается в некоторых случаях распадения линии пересечения на две плоские кривые второго порядка. Это бывает в тех случаях, когда обе пересекающиеся поверхности вращения (цилиндр и конус, два конуса, эллипсоид и конус и т. п.) описаны вокруг общей для них сферы. В примерах, приведённых на рис. 5, в первых трёх случаях пересечения происходит по эллипсам, в четвёртом – по эллипсу и параболе, а в пятом – по эллипсу и гиперболе.

РИС. 5


На рис. 6 показаны два цилиндра равного диаметра с пересекающимися осями. Из точки пересечения осей может быть проведена сфера, вписанная в оба цилиндра. Обе поверхности пересекаются по линии, состоящей из двух эллипсов. На рис. 6 справа также изображены два цилиндра равного диаметра, но их оси пересекаются на этот раз не под прямым углом. Линия пересечения составлена из половин двух эллипсов.

Изображённые на рис. 5 и 6 кривые пересечения поверхностей проецируются на фронтальную плоскость проекций в виде прямолинейных отрезков, так как общая плоскость симметрии для каждой пары рассмотренных поверхностей расположена параллельно плоскости π2.

В рассмотренных примерах имеет место двойное соприкосновение двух пересекающихся поверхностей второго порядка, то есть наличие у этих поверхностей двух точек прикосновения, а следовательно, и двух плоскостей, каждая из которых касается обеих поверхностей в общей их точке. Приведём без доказательств следующие два положения, на которых основаны указанные выше построения: 1) поверхности второго порядка, имеющие двойное соприкосновение, пересекаются между собой по двум кривым второго порядка, причём плоскости этих кривых проходят через прямую, определяемую точками прикосновения; 2) две поверхности второго порядка, описанные около третьей поверхности второго порядка (или в неё вписанные (например, два сжатых эллипсоида вращения, вписанных в сферическую поверхность)), пересекаются между собой по двум кривым второго порядка. Второе положение, известное под названием теоремы Монжа, вытекает из первого.

На основании изложенного можно найти круговые сечения эллиптического конуса и эллиптического цилиндра. Пример дан на рис. 7. Взята некоторая сфера так, чтобы она имела двойное соприкосновение с поверхностью эллиптического конуса. В пересечении сферы с конусом получаются две плоские кривые – окружности в профильно-прецирующих плоскостях γ и α, дают две системы круговых сечений эллиптического конуса.

3. Соосные поверхности вращения (т. е. поверхности с общей осью) пересекаются по окружностям. На рис. 8 даны три примера: а) цилиндр и конус, б) сжатый эллипсоид и усечённый конус, в) две сферы. Во всех этих примерах даны лишь фронтальные проекции, причем общая ось поверхностей расположена параллельно плоскости π2. Поэтому окружности, получаемые при пересечении одной поверхности другою, проецируются на π2 в виде прямолинейных отрезков.


РИС. 8

За ось сферы можно принять любой её диаметр. Поэтому пересекающиеся сферы рассматриваются как соосные поверхности вращения. Также в качестве соосных поверхностей могут быть рассмотрены изображенные на рис. 9 цилиндр и сфера, конус и сфера, некоторая поверхность вращения и сфера. Оси цилиндра, конуса и поверхности вращения проходят через центры сфер. Пересечение происходит по окружностям.

На рис. 10 даны примеры изображения соосных поверхностей вращения и встречных сверлений одного и того же диаметра из практики машиностроительного черчения. Поверхности обозначены буквами: Т – круговое кольцо, К – конус, Ц – цилиндр, Сф – сфера; полученные в пересечении линии обозначены буквами: О – окружность, Э – эллипс. Эти линии проецируются в виде прямолинейных отрезков, тук Кук оси поверхностей параллельны плоскости проекций (в данном случае плоскости π2).

РИС. 10


ЗАКЛЮЧЕНИЕ

В результате нашего исследования мы:

· Расширили свои представлении о взаимном расположении поверхностей в пространстве

· Изучили возможные фигуры пересечения поверхностей в пространстве

· Научились строить линии пересечения кривых поверхностей

Я считаю, что данная работа полезна ученикам, интересующимся математикой, и может быть использована на факультативных занятиях по геометрии.


СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Анисимов И. К. Конспекты лекций по начертательной геометрии. – Р. 1970.

2. Гильберт. Д. Наглядная геометрия. – М.: Наука, 1981.

3. Гордон В.О. Курс начертательной геометрии. – М.: Наука, 1988.

4. Фролов С. А. Начертательная геометрия: учебник для вузов. – М.: Машиностроение, 1983.