Згідно (4.1), підставляючи (4.3), отримуємо інтеграл Фур’є в комплексній формі:
З формули (4.4) після відділення дійсної й мнимої частини можна перейти до інтеграла Фур'є в дійсній формі. З обліком парних і непарних функцій одержимо
б) Минаючи стандартну процедуру, визначимо модуль і аргумент величини
Поки співмножник експоненти (разом із синусом) міняє знак, він не може відігравати роль модуля
Тому для
звідки
В виразі (4.7) ціле число
Маємо:
1. амплітудний спектр у вигляді функції
Побудуємо таблицю амплітудного спектра
k | -4 | -2 | 0 | 2 | 4 |
| | | 0 | | |
| 0 | 0 | | 0 | 0 |
Графік амплітудного спектра наведений на рис.4.2
Рис.4.2 Графік амплітудного спектру досліджуємої неперіодичної функції
2. фазовий спектр у вигляді функції
Побудуємо таблицю для фазового спектра
k | -2 | -1 | 0 | 1 | 2 |
| | | 0 | | |
| | | 0 | | |
Графік фазового спектра наведений на рис.4.3
Рис.4.3 Графік фазового спектру досліджуємої неперіодичної функції
Розглянуту функцію
В курсовій роботі розглянута теорія та практика спектрального аналізу функцій при спектральному представленні неперіодичних функцій з застосуванням математичного апарату інтегральних перетворень Фур’є.
Від періодичного коливання до неперіодичного можна просто перейти, якщо не змінюючи форми імпульсу безмежно збільшувати період його проходження, що, у свою чергу, приведе до нескінченно близького розташування друг до друга спектральних складових, а значення їхніх амплітуд стають нескінченно малими. Однак початкові фази цих складових такі, що сума нескінченно великої кількості гармонійних коливань нескінченно малих амплітуд відрізняється від нуля й дорівнює функції тільки там, де існує імпульс. Тому поняття спектра амплітуд для неперіодичного коливання не має змісту, і його заміняють, використовуючи пряме й зворотне перетворення Фур'є. Відомо, що функція, що задовольняє заданим умовам, може бути представлена інтегралом Фур'є (зворотне перетворення Фур'є)
Використовуючи пряме перетворення Фур'є, приходимо до інтеграла
Функція
1. Ильн В.А., Позняк Э.Г. Основы математического анализа. ч.1М.: "Наука" - 387с-1980. ч.2М. Наука. - 444с-1982.
2. Овчинников П.П. Вища математика: підручник. Ч.2-3є вид. - К.: Техніка, 2001. - 792 с.
3. 3. Поляков М.Г., Фомичова Л.Я., Сушко С.О., Математичні основи теоретичної електротехніки: Навчальний посібник - Дн.: НГА України, 2001. - ч.1-210с.
4. 4. Синайский, Е.С. Высшая математика: учеб. пособие. - 2е изд. - / Синайский Е.С., Новикова Л.В., Заславская Л.И.; Министерство образования и науки Украины, Национальный горный университет. - Днепропетровск: НГУ. - Ч.1. - 2009. - 399 с.
5. Синайский Е.С. Высшая математика / Синайский Е.С., Новикова Л.В., Заславская Л. И.; Министерство образования и науки Украины, Национальный горный университет. - Днепропетровск: НГУ. - Ч.2. - 2006. - 452 с.
6. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. - М.: „Наука”, 1970. - Т.2. - 800 с.
7. Харкевич А.А. Спектры и анализ - М.: Физматгиз, 1980. - 246 с.