Згідно (4.1), підставляючи (4.3), отримуємо інтеграл Фур’є в комплексній формі:
(4.4)З формули (4.4) після відділення дійсної й мнимої частини можна перейти до інтеграла Фур'є в дійсній формі. З обліком парних і непарних функцій одержимо
, тобто (4.5)б) Минаючи стандартну процедуру, визначимо модуль і аргумент величини
привівши її до показової форми запису (4.6)Поки співмножник експоненти (разом із синусом) міняє знак, він не може відігравати роль модуля
. Неважко перевірити, що в проміжках при .Тому для
, значить ;звідки
. (4.7)В виразі (4.7) ціле число
довільне, його варто вибрати так, щоб виділялося головне значення. Оскільки в означених вище інтервалах зміни w справедливо , то досить взяти .Маємо:
1. амплітудний спектр у вигляді функції
,Побудуємо таблицю амплітудного спектра
k | -4 | -2 | 0 | 2 | 4 |
0 | |||||
0 | 0 | 0 | 0 |
Графік амплітудного спектра наведений на рис.4.2
Рис.4.2 Графік амплітудного спектру досліджуємої неперіодичної функції
2. фазовий спектр у вигляді функції
, . Діаграми для побудовані з урахуванням парності й непарності .Побудуємо таблицю для фазового спектра
k | -2 | -1 | 0 | 1 | 2 |
0 | |||||
0 |
Графік фазового спектра наведений на рис.4.3
Рис.4.3 Графік фазового спектру досліджуємої неперіодичної функції
Розглянуту функцію
в радіотехніці застосовують для опису прямокутного імпульсу тривалості . Прилад, що реєструє цей сигнал, сприймає тільки кінцевий інтервал частот. Важливо, щоб в останній попадала основна частина спектра, який відповідає найбільшим значенням амплітуд . Довжину такого інтервалу характеризують за допомогою поняття ширини спектра. У даному прикладі шириною спектра називають величину . Тривалість імпульсу й ширина його спектра обернено залежні. Ця властивість - загальна для імпульсів різної форми.В курсовій роботі розглянута теорія та практика спектрального аналізу функцій при спектральному представленні неперіодичних функцій з застосуванням математичного апарату інтегральних перетворень Фур’є.
Від періодичного коливання до неперіодичного можна просто перейти, якщо не змінюючи форми імпульсу безмежно збільшувати період його проходження, що, у свою чергу, приведе до нескінченно близького розташування друг до друга спектральних складових, а значення їхніх амплітуд стають нескінченно малими. Однак початкові фази цих складових такі, що сума нескінченно великої кількості гармонійних коливань нескінченно малих амплітуд відрізняється від нуля й дорівнює функції тільки там, де існує імпульс. Тому поняття спектра амплітуд для неперіодичного коливання не має змісту, і його заміняють, використовуючи пряме й зворотне перетворення Фур'є. Відомо, що функція, що задовольняє заданим умовам, може бути представлена інтегралом Фур'є (зворотне перетворення Фур'є)
.Використовуючи пряме перетворення Фур'є, приходимо до інтеграла
.Функція
називається комплексною спектральною щільністю амплітуд, а її модуль - спектральною щільністю амплітуд. Аргумент називають фазовим спектром неперіодичного коливання.1. Ильн В.А., Позняк Э.Г. Основы математического анализа. ч.1М.: "Наука" - 387с-1980. ч.2М. Наука. - 444с-1982.
2. Овчинников П.П. Вища математика: підручник. Ч.2-3є вид. - К.: Техніка, 2001. - 792 с.
3. 3. Поляков М.Г., Фомичова Л.Я., Сушко С.О., Математичні основи теоретичної електротехніки: Навчальний посібник - Дн.: НГА України, 2001. - ч.1-210с.
4. 4. Синайский, Е.С. Высшая математика: учеб. пособие. - 2е изд. - / Синайский Е.С., Новикова Л.В., Заславская Л.И.; Министерство образования и науки Украины, Национальный горный университет. - Днепропетровск: НГУ. - Ч.1. - 2009. - 399 с.
5. Синайский Е.С. Высшая математика / Синайский Е.С., Новикова Л.В., Заславская Л. И.; Министерство образования и науки Украины, Национальный горный университет. - Днепропетровск: НГУ. - Ч.2. - 2006. - 452 с.
6. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. - М.: „Наука”, 1970. - Т.2. - 800 с.
7. Харкевич А.А. Спектры и анализ - М.: Физматгиз, 1980. - 246 с.