Смекни!
smekni.com

Поиски более рационального способа решения систем линейных уравнений с двумя переменными - методом подстановки (стр. 2 из 4)

x = 2 + 10; у = 10 - 2. Далее, х2 + у2 = (г +lO) 2 + (10 - г) 2 == 2z2 + 200.

Таким образом,

2z2 + 200 = 208,

Откуда

z = 2; х = 2 + 10 = 12; у = 10 - 2 = 8.

В поисках различных решений я обнаружил следующее.

Основные методы решения рациональных уравнений.

1) Простейшие: решаются путём обычных упрощений - приведение к общему знаменателю, приведение подобных членов и так далее. Квадратные уравнения ax2 + bx + c = 0 решаются по выведенной нами формуле

Также используется теорема Виета:

x1 + x2 = - b / a; x1x2 = c / a.

2) Группировка: путём группировки слагаемых, применения формул сокращённого умножения привести (если удастся) уравнение к виду, когда слева записано произведение нескольких сомножителей, а справа - ноль. Затем приравниваем к нулю каждый из сомножителей.

3) Подстановка: ищем в уравнении некоторое повторяющееся выражение, которое обозначим новой переменной, тем самым упрощая вид уравнения. В некоторых случаях очевидно что удобно обозначить. Например, уравнение (x2 + x- 5) / x + 3x / (x2 + x- 5) + 4 = 0,легко решается с помощью подстановки (x2 + x- 5) / x = t, получаем t + (3/t) + 4 = 0. Или: 21/ (x2 - 4x+ 10) - x2 + 4x = 6. Здесь можно сделать подстановку x2 - 4 = t. Тогда 21/ (t + 10) - t = 6 и т.д.

В более сложных случаях подстановка видна лишь после нескольких преобразований. Например, дано уравнение

(x2 + 2x) 2 - (x +1) 2 = 55.

Переписав его иначе, а именно (x2 + 2x) 2 - (x2 + 2x + 1) = 55, сразу увидим подстановку x2 + 2x=t.

Имеем t2 - t- 56 = 0, t1 = - 7, t2 = 8. Осталось решить x2 + 2x = - 7 и x2 + 2x = 8. В ряде других случаев удобную подстановку желательно знать “заранее". Например

1) Уравнение (x + a) 4 + (x + b) 4 = cсводится к биквадратному, если сделать подстановку

x = t- (a + b) / 2.

2) Симметрическое уравнение (возвратное) a0xn + a1xn- 1 + … + a1x + a0 = 0 (коэффициенты членов, равностоящих от концов, равны) решается с помощью подстановки x + 1/x = t, если n - чётное; если n - нечётное, то уравнение имеет корень x = - 1.

3) Уравнение вида (x + a) (x + b) (x + c) (x + d) = l сводится к квадратному, если a + b = c + dи т.д.

4) Подбор: при решении уравнений высших степеней рациональные корни уравнения anxn + an- 1xn- 1 + …+ a1x + a0 = 0 ищем в виде p / q, где p - делитель a0, q - делитель an, p и qвзаимно просты, pÎZ, qÎN.

5) “Искусство”, т.е. решать пример нестандартно, придумать “свой метод", догадаться что-то прибавить и отнять, выделить полный квадрат, на что-то разделить и умножить и т.д.

6) Уравнения с модулем: при решении уравнений с модулем используется определение модуля и метод интервалов. Напомним, что

f (x), если f (x) ³0,|f (x) | =

f (x), если f (x) < 0.

Это уже изученные методы и широко применяемые в практической математике. Выделенные жирным курсивом - это методы мною изучаемые 5) “Искусство", - это то, что мне предстоит найти.

Хотелось бы остановится на некоторых из них.

Метод Гаусса.

Пусть дана система линейных уравнений

(1)

Коэффициенты a 11,12,..., a 1n,..., a n1, b 2,..., b n считаются заданными. Вектор - строка í x 1, x 2,..., x n ý - называется решением системы (1), если при подстановке этих чисел вместо переменных все уравнения системы (1) обращаются в верное равенство.

Определитель n-го порядка D = ç A ê = ç a ij ç, составленный из коэффициентов при неизвестных, называется определителем системы (1). В зависимости от определителя системы (1) различают следующие случаи.

a). Если D ¹ 0, то система (1) имеет единственное решение, которое может быть найдено методом ГАУССА. б). Если D = 0, то система (1) либо имеет бесконечное множество решений, либо несовместна, т.е. решений нет.

1. Рассмотрим систему 3-х линейных уравнений с тремя неизвестными.

(2).

Метод Гаусса решения системы (2) состоит в следующем: Разделим все члены первого уравнения на

, а затем, умножив полученное уравнение на
, вычтем его соответственно из второго и третьего уравнений системы (2). Тогда из второго и третьего уравнений неизвестное
будет исключено, и получиться система вида:

(3)

Теперь разделим второе уравнение системы (3) на

, умножим полученное уравнение на
и вычтем из третьего уравнения. Тогда из третьего уравнения неизвестное
будет исключено и получиться система треугольного вида:

(4)

Из последнего уравнения системы (4) находим

, подставляя найденное

подставляя найденное значение в первое уравнение, находим

.

Методом Гаусса решить систему:

Решение: Разделив уравнение (а) на 2, получим систему

Вычтем из уравнения (b) уравнение

, умноженное на 3, а из уравнения (c) - уравнение
, умноженное на 4.

Разделив уравнение

(
) на - 2,5, получим:

Вычтем из уравнения (

) уравнение
, умноженное на - 3:

Из уравнения

находим Z=-2; подставив это значение в уравнение
, получим Y=0,2-0,4Z=0,2-0,4 (-2) =1; наконец, подставив значение Z=-2 и Y=1 в уравнение (a 1), находим X=0,5-0,5Y-Z=0,5-0,5 1 - (-2) =2. Итак, получаем ответ X=2, Y=1, Z=-2.

Проверка:

Линейные уравнения.

Уравнения вида ax+b=0, где a и b - некоторые постоянные, называется линейным уравнением.

Если a¹0, то линейное уравнение имеет единственный корень: x = - b /a.

Если a=0; b¹0, то линейное уравнение решений не имеет.

Если a=0; b=0, то, переписав исходное уравнение в виде ax = - b, легко видеть, что любое xявляется решением линейного уравнения.

Уравнение прямой имеет вид: y = ax + b.

Если прямая проходит через точку с координатами X0 и Y0, то эти координаты удовлетворяют уравнению прямой, т.е. Y0 = aX0 + b.

Пример 1.1 Решить уравнение

2x- 3 + 4 (x- 1) = 5.

Решение. Последовательно раскроем скобки, приведём подобные члены и найдём x: 2x- 3 + 4x- 4 = 5, 2x + 4x = 5 + 4 + 3,6x = 12, x = 2.

Ответ: 2.

Пример 1.2 Решить уравнение 2x - 3 + 2 (x- 1) = 4 (x- 1) - 7.

Решение.2x + 2x- 4x = 3 +2 - 4 - 7, 0x = - 6.

Ответ: Æ.

Пример 1.3 Решить уравнение.

2x + 3 - 6 (x- 1) = 4 (x- 1) + 5.

Решение.

2x- 6x + 3 + 6 = 4 - 4x + 5,- 4x + 9 = 9 - 4x,

4x + 4x = 9 - 9,0x = 0.

Ответ: Любое число.

Системы линейных уравнений.

Уравнение вида

a1x1 + a2x2 + … + anxn = b,

где a1, b1, …,an, b - некоторые постоянные, называется линейным уравнением с n неизвестными x1, x2, …, xn.

Система уравнений называется линейной, если все уравнения, входящие в систему, являются линейными. Если система из n неизвестных, то возможны следующие три случая:

система не имеет решений;

система имеет ровно одно решение;

система имеет бесконечно много решений.

Пример: решить систему уравнений

x + y- z = 2,2

x- y + 4z = 1,

x + 6y + z = 5.

Решение. При решении систем линейных уравнений удобно пользоваться методом Гаусса, который состоит в преобразовании системы к треугольному виду.

Умножаем первое уравнение системы на - 2 и, складывая полученный результат со вторым уравнением, получаем - 3y + 6z = - 3. Это уравнение можно переписать в виде y- 2z = 1. Складывая первое уравнение с третьим, получаем 7y = 7, или y = 1.

Таким образом, система приобрела треугольный вид

x + y- z = 2,

y- 2z = 1 ,y = 1.

Подставляя y = 1 во второе уравнение, находим z = 0. Подставляя y =1 и z = 0 в первое уравнение, находим x = 1.

Ответ: (1; 1; 0).

Системы уравнений второй степени.