Смекни!
smekni.com

Полуполя, являющиеся простыми расширениями с помощью комплексного числа (стр. 1 из 5)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ

Математический факультет

Кафедра алгебры и геометрии

Выпускная квалификационная работа

Полуполя, являющиеся простыми расширениями с помощью комплексного числа

Выполнил

студент 5 курса

математического факультета

Чупраков Дмитрий Вячеславович

_____________________/подпись/

Научный руководитель:

д.ф-м.н., профессор Е.М. Вечтомов

_____________________/подпись/

Рецензент:

к.ф-м.н., доцент В.В. Чермных

_____________________/подпись/

Допущена к защите в ГАК

Зав. кафедрой ______________________д.ф-м.н., профессор Е.М. Вечтомов

(подпись) “__” _________

Декан факультета _____________________к.ф-м.н., доцент В.И. Варанкина

(подпись) “__” _________

Киров

2005


Содержание

Содержание. 2

Введение. 3

Глава 1. 5

1.1. Базовые понятия и факты.. 5

1.2. Простое расширение Q+(a) 5

1.3. Минимальное соотношение алгебраического элемента над полуполем рациональных неотрицательных чисел. 7

Глава 2. Однопорожденные полуполя. 9

2.1. Структура простого расширения полуполя неотрицательных рациональных чисел. 9

2.2. Расширения полуполя неотрицательных действительных чисел комплексным числом. 11

2.3. Расширения полуполя неотрицательных рациональных чисел комплексным числом. 12

2.4. Примеры.. 20

Литература. 22

Введение

Теория полуполей – одно из интенсивно развивающихся разделов общей алгебры, являющейся обобщением теории полей. Одним из основных способов исследования полей является построение их расширений. Поэтому естественно исследовать расширения полуполей. Эта проблема освещена в статье А.В.Ряттель [3] и диссертации И.И.Богданова. Но в них рассматриваются случаи упорядочиваемых расширений. Интересно рассмотреть неупорядочиваемые расширения. Этому вопросу посвящена данная квалификационная работа

Целью квалификационной работы является исследование однопорожденных расширений полуполей неотрицательных рациональных чисел и неотрицателных действительных чисел комплексным числом на предмет выявления признаков и свойств, позволяющих упростить поиск расширений, являющихся полуполями.

Выпускная квалификационная работа состоит из двух глав. В главе 1 представлены предварительные сведения, необходимые для изучения однопорожденных расширений полуполей. Глава 2 посвящена исследованию однопорожденных расширений полуполей.

В работе принята сквозная тройная нумерация теорем и лемм, где первое число – номер главы, второе – номер параграфа, третье – номер в параграфе. Например, теорема 2.1.1 – первая теорема первого параграфа второй главы.

Основными результатами работы являются:

· Теорема 2.2.1.Любое расширение

, где
, является полем С
.

· Теорема 2.3.1.Если

, то

– поле тогда и только тогда, когдаQ+(-a2) – поле, позволяющая выявлять полуполя вида
.

· Теорема 2.3.6. Если минимальный многочлен f-g порождает полуполе то, он либо имеет положительный действительный корень, либо корень

, такой что
и последовательность (**), заданная числами
p и q, не содержит отрицательных элементов.
Последовательность

задается следующим образом:

Эта теорема помогает сократить область поиска расширений, являющихся полуполями.

· Теорема 2.3.7.Для комплексных чисел

расширение
, минимальное соотношение которого имеет положительный корень, является полуполем.

Глава 1.

1.1. Базовые понятия и факты

Определение: Алгебра <P, +, ×> называется полуполем, если

(1) <Р, +> – коммутативная полугруппа с 0;

(2) <Р, ×> – группа с 1;

(3) Дистрибутивность

a.

b.

(4)

Не сложно показать, что Q+ является полуполем.

Определение: Пусть Р – подполуполе полуполя F,

, тогда простым расширением полуполя Pс помощью элемента a называется наименьшее подполуполе полуполя F, содержащее множество Pи элемент a. Простое расширение Pс помощью a обозначается P(a).

1.2. Простое расширение Q+(a)

Теорема 1.2.1. Произвольное полутело либо аддитивно идемпотентно, либо содержит копию Q+ в качестве полутела.

Доказательство. Предположим, что S – неидемпотентное полутело, т.е. найдется такой ненулевой элемент sÎS, что s+s¹s. Откуда

.

Рассмотрим суммы единиц. Через

обозначим сумму k единиц (при kÎN). Так как любое полутело является антикольцом, то
. Покажем, что суммы различного числа единиц в Sразличны. Допустим от противного, что
при некоторых натуральных m<n. Положим l=n-mÎN. Тогда
. Прибавляя к обеим частям этого равенства элемент
, получим

.

Применяя эту процедуру несколько раз, будем иметь

для любого tÎN.

По свойству Архимеда, найдется такое tÎN, что tl>n. При k=tlимеем

и n<k. Тогда

.

Откуда 1=1+1 (

). Получили противоречие.

Следовательно, полутело Sсодержит аддитивную копию N. Но тогда S содержит и частные сумм 1, т.е. содержит копию полуполя Q+, причем, очевидно, операции в Q+ и S согласованы.

Теорема1.2.2.

- простое расширение полуполя Q+.

Доказательство. Заметим, что Q+(a) – полуполе. Кроме того, а Î Q+(a). Это не сложно увидеть, взяв

. Очевидно
.

Предположим, что есть полуполе PменьшееQ+(a), содержащее а и Q+. Тогда оно содержит все выражения вида

. Так как P– полуполе, то
. Таким образом,
. Так как P – минимальное полуполе, то
. То есть,
–простое расширение полуполя Q+.

Аналогично доказывается следующее утверждение.

Теорема1.2.3.

- простое расширение поля Q.

1.3. Минимальное соотношение алгебраического элемента над полуполем рациональных неотрицательных чисел

Пусть а – алгебраическое число. Тогда минимальный многочлен F числа а имеет степень ≥ 1. Тогда обозначим через fмногочлен, составленный из положительных одночленов многочлена F, а многочлен g составим из отрицательных членов, взятых с противоположными знаками. Тогда

.
, тогда
.