Смекни!
smekni.com

Понятие эвристики в математике (стр. 5 из 7)

Сама идея, что метод изложения должен совпадать с порядком открытия, неправильна. При всяком открытии идут ощупью, причем через ряд ошибок, которые исправляются, и при этом руководятся аналогией и индукцией. Самый процесс закулисной мыслительной работы совсем иной, чем тот, по которому следует вести ученика. Энциклопедисты XVIII в много говорили о происхождении, но сами обладали очень плохим историческим чутьем и их дикари, а также греки и римляне очень далеки были от настоящих. Все их представления о том процессе, который ведет к открытиям, строились априорно, а не как выводы из психологического анализа систематически накопленного материала[8].

Но следует идти дальше. Первое изложение доказательств не только не должно вестись учеником вместе с учителем, но оно и не должно прерываться обращением ко всему классу. Все должно быть излагаемо систематично и во вполне обработанном виде. Ясно, что изложение может быть только синтетическим. Таким образом вместе с тем решается и вопрос о синтезе и анализе.

Только тогда, когда учитель может с основанием предположить, что изложенное в обработанной синтетической форме усвоено учащимся, он может привлечь учащегося к самостоятельному мышлению. Оно может тогда носить чисто уже аналитический характер, т.е. учитель может в некоторой мере разъяснять учащемуся, почему он поступает так, а не иначе, что должно наводить на мысль провести такие-то прямые или описать такие-то окружности. Я думаю, что это является более полезным, чем воспроизведение доказательства одним из учащихся, что в большинстве случаев, конечно, не вполне удается. Для всего класса это едва является очень полезным, так как и здесь за изложением ученика класс не в состоянии следовать и изложение это ни в коем случае не служит ни к большему разъяснению хода доказательства, ни к закреплению его в памяти.

При вторичном проведении доказательства, эвристические приемы уже вполне допустимы, но не в отношении одного ученика, вызванного к доске, а всего класса. Учитель может в своем изложении вставлять обращение к некоторым определенным ученикам, им избранным, или к тем, которые выявятся при вызове учителя на ответ по предлагаемому им вопросу. Но только по получении ответа из класса учителем, следует продолжать изложение так, как если этого ученического ответа не было, т.е. следует ответ формулировать самому учителю в вполне отделанной и точной форме.

Какова роль учителя при решении классных задач у доски? Эта методическая проблема вовсе не так проста, как это кажется на первый взгляд. Предоставить все ученику, даже хорошему, если только задача не решается по трафарету, представляет ошибку.

Но ошибочным является также все брать на себя и превращать ученика в автомат, воспроизводящий на доске ход мышления учителя. Очевидно здесь приходится выбирать золотую середину.

Следует считаться с тем, что ученик у доски, должен обнаружить в ограниченное время догадку, что не всегда можно требовать не только от среднего, но и от хорошего ученика, не быстро соображающего. Учитель же не должен просто подсказывать, а должен наводить и в этом наведении должно обнаруживаться методическое искусство учителя. Только в том случае, когда намеки определенно не дают результатов, можно прибегнуть к подсказке. И здесь тоже не должно все ограничиваться учеником. Учитель должен сам повторять решение; только в этом случае решение сможет быть усвоено всем классом.

Перед первой империалистической войной вошло в моду в школе то, что называли анализом решения задач, т.е. изложение по существу психических мыслительных процессов, приводящих к излагаемому решению.

В письменных работах на аттестат зрелости в Варшавском Округе за 1914 год эта часть оказывалась уродливо раздутой, в то время , как в самом решении обычно выпадало существенное – доказательство правомерности вспомогательных построений. Я считаю, конечно, все это методической ошибкой, при неправильном понимании эвристического метода.

Письменные работы должны содержать только окончательную обработку решения, что же касается закулисной мыслительной работы, то полностью её и нельзя изложить, а если стараться её изложить возможно подробней, то для более трудных задач приходится излагать нахождение путем аналогии и индукции не только правильных путей, но и также и неверных, с которых приходится сходить.

Ученик должен в письменной работе дать готовую постройку, а не давать её в лесах, которые, как это произошло в упомянутых работах, закрывали все здание. Я думаю, что аналитический элемент должен быть только в изложении вторичных доказательств теорем и решений задач, излагаемых не учеником, а самим учителем.

К числу эвристических приемов принадлежит и предоставление ученику разыскания ошибок в решении задач и в доказательствах, проводимых товарищем.

Конечно, прием неправильного решения, развитого учителем, с предложением указать ошибку, является с педагогической точки зрения не приемлемым, так как может родить недоверие к учителю и ученик будет подозревать ошибки и в других местах изложения учителя.

Но, правда в некоторой ограниченной мере допустимо предложение ученикам задач с противоречащими условиями или с недостающими данными, и в том и в другом случае неразрешимых. Но при этом возможны два приема: 1) подчеркнув, что задача и в первом и во втором случае неразрешима, предложить разъяснить причину этому; 2) просто предложить такую задачу и поставить ученика в тупик и потом уже поставить вопрос о разрешимости. Из этих приемов следует предпочесть, конечно, первый.

2.2. Особенности применения эвристического подхода при доказательстве теорем

Методика обучения доказательству в математике (при преподавании математике в школе) рекомендует как можно раньше приобщать школьников к самостоятельному открытию фактов и способов их обоснования, хотя у учащихся еще нет даже самого простого представления о процессе доказательства, его составляющих. Само требование «доказать» не вызывает у них нужных ассоциаций. Процесс самостоятельного поиска доказательства основывается на ряде логических и эвристических операций, многими из которых учащиеся 6–7-х классов не владеют. Поэтому на первых уроках геометрии 7-го класса следует воспользоваться готовыми доказательствами с целью изучения структуры логического вывода (наличия большой посылки, малой посылки), связей логических шагов. Для достижения этой цели можно воспользоваться специальными карточками с двумя колонками, в одной из которых указываются утверждения, в другой — обоснования, причем каждая колонка имеет пустые места, количество которых зависит от способностей школьника, заполняющего пропуски в колонках. Ясно, что сказанное не отменяет эвристического обучения и приобщения учеников к открытию доказательств. Однако самостоятельное доказательство должно основываться на понимании готового доказательства, порядка, что ведет к формированию устойчивых математических образов.

Учитывая, что у ученика с его взрослением развиваются пространственные представления об окружающем мире, приобретающие форму устойчивых образов реальных объектов, изучение элементов геометрии в 5–6-х классах естественно должно основываться на идее фузионизма (слияния); однако эта идея не должна быть стержневой. В основной школе должен изучаться систематический курс планиметрии, а в старших классах — курс стереометрии. Заканчивать изучение геометрии в средней школе следует знакомством школьников с аксиоматическим методом не только как методом организации математической теории, но и как эффективным эвристическим средством, а также выходом в геометрию четырехмерного пространства. Известно, что необходимость систематических курсов оспаривается некоторыми математиками и методистами. Они предлагают, в частности, единый курс планиметрии и стереометрии. Однако такой курс построить на достаточно строгом логическом уровне в основной школе невозможно. Такой курс будет представлять собой набор различных фактов, поэтому мера порядка его организации будет невысокой, а потому будет низкой и мера привлекательности такого курса для учащихся, что, несомненно, будет отражаться на их интересе к изучению такого курса, а следовательно и на знаниях и умениях школьников.

Необходимость учета зависимости меры красоты и привлекательности объекта от порядка и меры усилий на его понимание подтверждает и природа распознавания объектов: на уровне свернутого выполнения действий распознавание осуществляется не по логическим признакам, а по внешне выраженным, наглядным признакам используемых объектов. «Идеальный» вариант возникает тогда, когда определение понятия позволяет воображению легко конструировать образы определяемых объектов. В данном контексте, например, наиболее привлекательным среди возможных определений параллелограмма является классическое определение, так как оно в большей мере соответствует имеющемуся в мышлении ученика образу параллелограмма.

Известны многолетние дискуссии по вопросу использования алгебраического метода решения текстовых задач. Одни участники дискуссий выступают за раннее введение метода уравнений, другие считают, что основное внимание в начальной школе и в 5–6-х классах должно уделяться арифметическому методу.

С позиции красоты вряд ли будет казаться привлекательным для ученика 5-го класса решение текстовой задачи с применением уравнений или доказательство теоремы методом «от противного», потому что рассуждения, осуществляемые в процессе решения задачи либо в доказательстве теоремы, не будут для ученика естественными. Хотя текстовые задачи привлекательны для школьников, поскольку они отражают реальные ситуации, хорошо знакомые им[9].