Другие известные вам термины, относящиеся к интегральному исчислению, появились заметно позднее. Употребляющееся сейчас название первообразная функция заменило более раннее «примитивная функция», которое ввел Лагранж (1797 г.). Латинское слово primitivus переводится как «начальный»:
— начальная (или первоначальная, или первообразная) для f(x), которая получается из F(х) дифференцированием.В современной литературе множество всех первообразных для функции f(х) называется также неопределенным интегралом. Это понятие выделил Лейбниц, который заметил, что все первообразные функции отличаются на произвольную постоянную. А
называют определенным интегралом (обозначение ввел К. Фурье (1768—1830), но пределы интегрирования указывал уже Эйлер).Методы математического анализа активно развивались в следующем столетии. В развитии интегрального исчисления приняли участие русские математики М. В. Остроградский (1801—1862), В. Я. Буняковский (1804-1889), П. Л. Чебышев (1821—1894).
Строгое изложение теории интеграла появилось только в прошлом веке. Решение этой задачи связано с именами О. Коши, одного из крупнейших математиков немецкого ученого Б. Римана (1826—1866, см. рис. 4.), французского математика Г. Дарбу (1842— 1917).
2.Дифференциал в физике
Мы ввели понятие дифференциала с помощью равенства
. Для вычисления дифференциала надо найти производную. Однако, помня о том, что дифференциал — это главная часть приращения функции, линейно зависящая от приращений аргумента, мы из физических соображений получим равенства вида dy = kdxи сделаем вывод о том, что k— это производная у по х.1. Работа. Найдем работу, которую совершает заданная сила Fпри перемещении по отрезку оси х. Если сила Fпостоянна, то работа А равна произведению Fна длину пути. Если сила меняется, то ее можно рассматривать как функцию от х: F=F(x). Приращение работы А на отрезке [х, x+dx] нельзя точно вычислить как произведение F(x)dx, так как сила меняется, на этом отрезке. Однако при маленьких dxможно считать, что сила меняется незначительно и произведение представляет главную часть
, т. е. является дифференциалом работы (dA = = F(x)dx). Таким образом, силу можно считать призводной работы по перемещению.2. Заряд. Пусть q— заряд, переносимый электрическим током через поперечное сечение проводника за время t. Если сила тока / постоянна, то за время dtток перенесет заряд, равный Idt. При силе тока, изменяющейся со временем по закону / = /(/), произведение I(t)dtдает главную часть приращения заряда на маленьком отрезке времени [/, t+-dt], т.е.- является дифференциалом заряда: dq = I{t)dt. Следовательно, сила тока является производной заряда по времени.
3. Масса тонкого стержня. Пусть имеется неоднородный тонкий стержень. Если ввести координаты так, как показано на рис. 130, то функция т= т(1) — масса куска стержня от точки О до точки /. Неоднородность стержня означает, что его линейная плотность не является постоянной, а зависит от положения точки / по некоторому закону р = р(/). Если на маленьком отрезке стержня [/, / + d/] предположить, что плотность постоянна и равна р(/), то произведение p(/)d/ дает дифференциал массы dm. Значит, линейная плотность — это производная массы по длине.
4. Теплота. Рассмотрим процесс нагревания какого-нибудь вещества и вычислим количество теплоты Q{T), которое необходимо, чтобы нагреть 1 кг вещества от 0 °С до Т. Зависимость Q=Q(T) очень сложна и определяется экспериментально. Если бы теплоемкость с данного вещества не зависела от температуры, то произведение cdTдало бы изменение количества теплоты. Считая на малом отрезке [T, T+dT] теплоемкость постоянной, получаем дифференциал количества теплоты dQ = c(T)dT. Поэтому теплоемкость — это производная теплоты по температуре.
5. Снова работа. Рассмотрим работу как функцию времени. Нам известна характеристика работы, определяющая ее скорость по времени, — это мощность. При работе с постоянной мощностью N работа за время dtравна Ndt. Это выражение представляет дифференциал работы, т.е. dA = N(t)dt, и мощность выступает как производная работы по времени.
Все приведенные примеры были построены по одному и тому знакомыми нам из курса физики: работа, перемещение, сила; заряд, время, сила тока; масса, длина, линейная плотность; и т. д. Каждый раз одна из этих величин выступала каккоэффициент пропорциональности между дифференциалами двумя других, т. е. каждый раз появлялось соотношение вида dy = k(x)dx. На такое соотношение можно смотреть как на способопределения величины k(x). Тогда k(x) находится (или определяется) как производная у по х. Этот вывод мы и фиксировали в каждом примере. Возможна и обратная постановка вопроса: как найти зависимость у от х из заданного соотношения междуих дифференциалами.
3. Приложения определенного интеграла к решению некоторых задач механики и физики
1. Моменты и центры масс плоских кривых. Если дуга кривой задана уравнением y=f(x), a≤x≤b, и имеет плотность
= (x), то статические моменты этой дуги Mx и My относительно координатных осей Ox и Oy равнымоменты инерции IХ и Iу относительно тех же осей Ох и Оу вычисляются по формулам
а координаты центра масс
и — по формуламгде l— масса дуги, т. е.
Пример 1. Найти статические моменты и моменты инерции относительно осей Ох
и Оу дуги цепной линии y=chx при 0≤x≤1.
◄ Имеем:
Следовательно,В приложениях часто оказывается полезной следующая
Теорема Гульдена. Площадь поверхности, образованной вращением дуги плоской кривой вокруг оси, лежащей в плоскости дуги и ее не пересекающей, равна произведению длины дуги на длину окружности, описываемой ее центром масс.
Пример 2.Найти координаты центра масс полуокружности
◄Вследствие симметрии
. При вращении полуокружности вокруг оси Ох получается сфера, площадь поверхности которой равна , а длина полуокружности равна па. По теореме Гульдена имеемОтсюда
, т.е. центр масс C имеет координаты C .2. Физические задачи. Некоторые применения определенного интеграла при решении физических задач иллюстрируются ниже в примерах.
Пример 4. Скорость прямолинейного движения тела выражается формулой
(м/с). Найти путь, пройденный телом за 5 секунд от начала движения.◄ Так как путь, пройденный телом со скоростью
(t) за отрезок времени [t1,t2], выражается интеграломто имеем:
►4. Дифференциальные уравнения
Многие физические законы имеют вид дифференциальных уравнений, т. е. соотношений между функциями и их производными. Задача интегрирования этих уравнений — важнейшая задача математики. Одни дифференциальные уравнения удается проинтегрировать в явном виде, т.е. записать искомую функцию в виде формул. Для решения других до сих пор не удается найти достаточно удобных формул. В этих случаях можно найти приближенные решения с помощью вычислительных машин. Мы не будем подробно изучать методы интегрирования дифференциальных уравнений, а только рассмотрим несколько примеров.