Смекни!
smekni.com

Применение методов дискретной математики в экономике (стр. 2 из 6)

V
(2)

Любая булева функция, тождественно не равная единице представима и притом единственным образом в виде КНФ.

L
(3).

Любая булева функция представима формулой, в которую входит только конъюнкция, дизъюнкция и отрицание /2/.

Искомая ДНФ для функции (1) имеет вид:

Искомая КНФ для функции (1) будет иметь следующий вид:

В расчетах ДНФ и КНФ использована методика /2/.

Построение полинома Жегалкина.

Представление булевой функции над базисом {0,1,v,Å} называется полиномом Жегалкина.

Таким образом, всякая булева функция представима в виде:

где ∑ - сложение по модулю два, знак · обозначает конъюнкцию/7/.

Для функции f(x,y,z)(1) полином Жегалкина имеет вид:

P(x, y, z)=b0×1Åb1×xÅb2×yÅb3×zÅb4×x×yÅb5×x×zÅb6y×zÅb7x×y×z

Метод неопределенных коэффициентов заключается в том, что путем последовательной подстановки переменных x, y, z и соответственно значений функции при этих переменных, из таблицы 1 в данный полином (4), строится система уравнений:

0=b0×1Åb1×0Åb2×0Åb3×0Åb4×0×0Åb5×0×0Åb60×0Åb70×0×0

0=b0×1Åb1×0Åb2×0Åb3×1Åb4×0×0Åb5×0×1Åb60×1Åb70×0×1

1=b0×1Åb1×0Åb2×1Åb3×0Åb4×0×1Åb5×0×0Åb61×0Åb70×1×0

0=b0×1Åb1×0Åb2×1Åb3×1Åb4×0×1Åb5×0×1Åb61×1Åb70×1×1

0=b0×1Åb1×1Åb2×0Åb3×0Åb4×1×0Åb5×1×0Åb60×0Åb71×0×0

0=b0×1Åb1×1Åb2×0Åb3×1Åb4×1×0Åb5×1×1Åb60×1Åb71×0×1

0=b0×1Åb1×1Åb2×1Åb3×0Åb4×1×1Åb5×1×0Åb61×0Åb71×1×0

0=b0×1Åb1×1Åb2×1Åb3×1Åb4×1×1Åb5×1×1Åb61×1Åb71×1×1

По свойству суммы по модулю два находится b:

b0=0, b1=0, b2=1, b3=0, b4=1, b5=0, b6=1, b7=1

Полином Жегалкина будет иметь вид:

¦(x, y, z) = y Å x×y Å y×z Å x×y×z

Правильность построения полинома проверяется таблицей истинности:

Таблица 4 - Таблица истинности для полинома Жегалкина

1 2 3 4 5 6 7 8 9
x y z x&y Å y&z Å x&y&z Å
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 1
0 1 1 0 1 1 0 0 0
1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0
1 1 1 1 0 1 1 1 0

Дифференцирование функции нескольких переменных.

Производной булевой функции ¦(xn) по совокупности

переменных
называется функция:

На основе данной формулы (5) находится производная по одной переменной x

Для данной функции (1) производная по формуле (6) принимает вид:

Таблица 5 - Производная ∂¦⁄∂xдля формулы(7)

1 2 3 4 5 6 7 8 9 10 11 12 13
x y z
&
0 0 0 1 0 1 1 1 0 1 0 0 0
0 0 1 1 1 1 1 1 0 1 0 0 0
0 1 0 1 0 1 0 1 0 1 1 1 0
0 1 1 1 1 1 0 0 1 1 1 0 1
1 0 0 0 0 1 1 1 0 0 1 0 1
1 0 1 0 0 1 1 1 0 0 1 0 1
1 1 0 0 0 1 0 1 0 0 0 0 0
1 1 1 0 0 1 0 0 1 1 1 0 1

Вектор значений функции (7) имеет вид:

Производная по двум переменным находится также по формуле (5):

Для данной функции (1) производная принимает вид:

Таблица 6 - Производная ∂2¦⁄∂(x;y) для формулы(9)



1
2 3 4 5 6 7 8 9 10 11 12
x
&
0 1 1 0 1 1 1 0 1 0 0 0
0 1 0 0 1 1 1 0 1 0 0 0
0 0 1 0 1 0 1 0 1 1 1 0
0 0 0 0 1 0 0 1 1 1 0 1
1 1 1 1 1 1 1 0 0 1 0 1
1 1 0 0 1 1 1 0 0 1 0 1
1 0 1 1 1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 1 1 1 0 1

Вектор значений функции (6) имеет вид: