Любая булева функция, тождественно не равная единице представима и притом единственным образом в виде КНФ.
L (3).Любая булева функция представима формулой, в которую входит только конъюнкция, дизъюнкция и отрицание /2/.
Искомая ДНФ для функции (1) имеет вид:
Искомая КНФ для функции (1) будет иметь следующий вид:
В расчетах ДНФ и КНФ использована методика /2/.
Построение полинома Жегалкина.
Представление булевой функции над базисом {0,1,v,Å} называется полиномом Жегалкина.
Таким образом, всякая булева функция представима в виде:
где ∑ - сложение по модулю два, знак · обозначает конъюнкцию/7/.
Для функции f(x,y,z)(1) полином Жегалкина имеет вид:
P(x, y, z)=b0×1Åb1×xÅb2×yÅb3×zÅb4×x×yÅb5×x×zÅb6y×zÅb7x×y×z
Метод неопределенных коэффициентов заключается в том, что путем последовательной подстановки переменных x, y, z и соответственно значений функции при этих переменных, из таблицы 1 в данный полином (4), строится система уравнений:
0=b0×1Åb1×0Åb2×0Åb3×0Åb4×0×0Åb5×0×0Åb60×0Åb70×0×00=b0×1Åb1×0Åb2×0Åb3×1Åb4×0×0Åb5×0×1Åb60×1Åb70×0×1
1=b0×1Åb1×0Åb2×1Åb3×0Åb4×0×1Åb5×0×0Åb61×0Åb70×1×0
0=b0×1Åb1×0Åb2×1Åb3×1Åb4×0×1Åb5×0×1Åb61×1Åb70×1×1
0=b0×1Åb1×1Åb2×0Åb3×0Åb4×1×0Åb5×1×0Åb60×0Åb71×0×0
0=b0×1Åb1×1Åb2×0Åb3×1Åb4×1×0Åb5×1×1Åb60×1Åb71×0×1
0=b0×1Åb1×1Åb2×1Åb3×0Åb4×1×1Åb5×1×0Åb61×0Åb71×1×0
0=b0×1Åb1×1Åb2×1Åb3×1Åb4×1×1Åb5×1×1Åb61×1Åb71×1×1
По свойству суммы по модулю два находится b:
b0=0, b1=0, b2=1, b3=0, b4=1, b5=0, b6=1, b7=1
Полином Жегалкина будет иметь вид:
¦(x, y, z) = y Å x×y Å y×z Å x×y×z
Правильность построения полинома проверяется таблицей истинности:
Таблица 4 - Таблица истинности для полинома Жегалкина
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
x | y | z | x&y | Å | y&z | Å | x&y&z | Å |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
Дифференцирование функции нескольких переменных.
Производной булевой функции ¦(xn) по совокупности
переменных называется функция:На основе данной формулы (5) находится производная по одной переменной x
Для данной функции (1) производная по формуле (6) принимает вид:
Таблица 5 - Производная ∂¦⁄∂xдля формулы(7)
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
x | y | z | & | |||||||||
0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
Вектор значений функции (7) имеет вид:
Производная по двум переменным находится также по формуле (5):
Для данной функции (1) производная принимает вид:
Таблица 6 - Производная ∂2¦⁄∂(x;y) для формулы(9)
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
x | & | ||||||||||
0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
Вектор значений функции (6) имеет вид: