Данную задачу можно решить венгерским методом, методом совершенного паросочетания. Для этого требуется построить матрицу А, отображающую длину между городами: aij – расстояние от города i до городаj(i≠j), если i = j, то ставится ∞ ,так как дороги не существует.
Строится приведенная матрица с целью получения в каждой строке и столбце не меньше одного кратчайшего маршрута (нулевого приведенного значения). Для этого в каждой строке матрицы А от каждого элемента отнимается значение минимального элемента этой строки:
Вычисляется коэффициент приведения, равный сумме всех минимальных элементов матрицы А, которые вычитали из строк и столбцов:
Кпр = 6 +5 + 4 + 3 + 4 + 10 = 32
Вычисляются коэффициенты значимости для каждого занулившегося элемента, где aij – элементы приведенной матрицы.
К12 = 1 + 1 = 2
К23 = 2
К34 = 1 + 2 = 3
К45 = 5 К61 = 2
К56 = 2 + 4 = 6
Из приведенной матрицы нужно вычеркнуть строку и столбец, содержащие элемент с максимальным коэффициентом значимости. В данном случае таким элементом является а56: коэффициент значимости равен 6. Для элемента а56 установим значение1: а56 = 1.
Коэффициент значимости:
К12 = 2
К23 = 2
К45 = 5
К61 = 2
К34 = 3
5) а45 = 1
Коэффициент значимости:
К12 = 2
К61 = 2
К34 = 3
К23 = 2
а45 = 1
Коэффициент значимости:
К12 = 7
К61 = 7
К23 = 2
а12 = 1, а61 = 1
а23 = 1
Таким образом, в маршрут вошли ребра: {5,6}, {4,5}, {3,4}, {1,2}, {6,1}, {2,3}. Все вершины (города) соединились. Длина маршрута составляет w({5,6}) + w({4,5}) + w({3,4}) +w({1,2}) + w({2,3}) = 4 + 3 + 4 + 6 + 10 + 5 = 32. Путь коммивояжера включает расстояния между городами {1,2},{2,3},{3,4},{4,5},{5,6},{6,1}, и имеет длину 32.
3. Практическое применение теории нечетких множеств
Под конкурентоспособностью понимают комплекс потребительских, стоимостных и социальных характеристик товара (изделия), определяющих его успех на данном рынке, т. е. способность данного товара быть обмененным на деньги на конкретном рынке в условиях широкого предложения к обмену других товаров-аналогов. Конкурентоспособность — это степень соответствия совокупности свойств объекта ценностной системе рынка. Границы понятия конкурентоспособность непрерывно расширяются, переходя от конкурентоспособности изделия к конкурентоспособности предприятий и даже государств. Конкурентоспособность обеспечивается высоким технологическим уровнем и качеством, соответствием требованиям и стандартам стран-импортеров, фирм-покупателей, высоким уровнем технологического обслуживания, патентной чистотой и патентной защитой, приемлемой ценой, льготными условиями платежа и т. д. Фирме, занимающейся реализацией компьютеров, необходимо из шести предложенных марок ноутбуков ASUSL8400, ASUST9, FUJITSU – SIEMENSLIFEBOOKB, IRUNOVIA 1012DVD, COMPAQEVON610C, INTELJS2310 выбрать модель с оптимальным набором характеристик (дисплей с большим количеством точек, процессор с высокой тактовой частотой, большой объем оперативной памяти, жесткий диск с большим объемом памяти, долгий срок автономной работы, маленький вес, низкая стоимость, большой гарантийный срок ). Известно, что ноутбук ASUSL8400 обладает следующими качествами: дисплей 14.5 точек, процессор 1 ГГц, память 256 Мбайт, жесткий диск 20 Гбайт, привод DVD-ROM, время автономной работы 2,7 часа, вес 2.9 кг, цена 1.5 тыс. долларов США, гарантийный срок 3 года. Ноутбук ASUST9 обладает следующими качествами: дисплей 14.1 точек, процессор 0.8 ГГц, память 128 Мбайт, жесткий диск 15 Гбайт, привод DVD-ROM, время автономной работы 2.5 часа, вес 2.1кг, цена 1.16 тыс. долларов США, гарантийный срок 2 года. Ноутбук FUJITSU–SIEMENSLIFEBOOKB: дисплей 10.4 точек, процессор 0.7 ГГц, память 256 Мбайт, жесткий диск 30 Гбайт, привод CD-RW, время автономной работы 2.4 часа, вес 1.6кг, цена 2 тыс. долларов США, гарантийный срок 2.5 года. Ноутбук IRUNOVIA 1012DVD: дисплей 12.0 точек, процессор 1.06 ГГц, память 128 Мбайт, жесткий диск 20 Гбайт, привод DVD-CDRW, время автономной работы 2.5 часа, вес 1.7 кг, цена 1.48 тыс. долларов США, гарантийный срок 1 год. Ноутбук COMPAQ EVO N610C: дисплей 14.0 точек, процессор 1.6 ГГц, память 256 Мбайт, жесткий диск 40 Гбайт, привод DVD-CDRW, время автономной работы 2.4 часа, вес 2.1 кг, цена 2 тыс. долларов США, гарантийный срок 3 года. Ноутбук INTEL JS2310: дисплей 14.0 точек, процессор 1.12 ГГц, память 256 Мбайт, жесткий диск 25 Гбайт, привод CD-RW, время автономной работы 2.5 часа, вес 1.9 кг, цена 1.37 тыс. долларов США, гарантийный срок 1 год. Данная задача может быть решена с помощью метода нечеткого отношения предпочтения /3/. Задачу выбора определенной марки ноутбука с учетом наиболее важных критериев качества рассмотрим на примере анализа альтернатив: a1 – ASUSL8400, a2 – ASUST9, a3 – FUJITSU–SIEMENSLIFEBOOKB, a4 – IRUNOVIA1012DVD, a5 - COMPAQEVON610C, a6 – INTELJS2310. Для оценки альтернатив используем девять критериев качества, где, на основе данных об основных характеристиках ноутбуков задаются множества значений, которые могут принимать различные характеристики: F1- дисплей (от 10 до 15 тыс. точек.), интерес представляет дисплей с большим количеством точек; F2- процессор (от 0,6 до 1,7 ГГц), предпочтение отдается процессору с большей тактовой частотой; F3- память (от 120 до 300 Мбайт), интерес представляет ноутбук с большим объемом памяти; F4- жесткий диск (от 10 до 45 Гбайт), предпочтение отдается жесткому диску с большим объемом памяти; F5- привод (от 1 до 10 баллов), предпочтение составляет большее количество баллов; F6- время автономной работы (от 2 до 3,5 часов), предпочтительнее большее количество часов автономной работы; F7- вес (от 1 до 3 кг), интерес составляет ноутбук с меньшим весом; F8- стоимость (от 1 до 3 тыс. долларов США), предпочтение отдается ноутбуку с меньшей ценой;
F9- срок гарантии (от 0,5 до 3,5 лет), предпочтение отдается ноутбуку с большим гарантийным сроком.
Теперь на основании функций принадлежности всех альтернатив находятся их значения по девяти критериям /6/. Для функции принадлежности утверждения «величина х мала» m(C) рассчитывается по формуле:
1, 0 < х < а1
m(C)=
, а1≤ х ≤ а2 (12)0, х> а2
Для функции принадлежности утверждения «величина х большая» m(C) рассчитывается по формуле:
0, 0 < х < а1m(C)=
, а1≤ х ≤а2 (13)1, х > а2
Для F1 значение m(F1) рассчитывается по следующей формуле
0, 0 < х < 10m(F1)=
, 10 ≤х ≤ 151, х > 15
μF1={0.9/ а1; 0.8/ а2; 0.1/ а3; 0.4/ а4; 0.7/ а5; 0.7/ а6}