sinmxsinnx=(1/2)(cos(m-n)x-cos(m+n)x)
Пусть существует f определенная на замкнутом интервале [a,b] => ее интегр суммы стремяться к конечному пределу при ранге разбиения - 0.
ax2+bx+c=a(x+b/2a)+(4ac-b2)/(4a2) x+b/2a=t; (ax+b)/(cx+d)=tk=>
ax+b= cx tk+ dtk=>x=…; dx=(…)dt
Поднесение по знак дифф-ла: Если ∫f(x)dx=F(x)+C, то ∫f(n)dx=F(n)+C
интегрир по частям: ∫udv=uv-∫vdu
∫xsinxdx=|u=x; du=dx; dv=sinxdx; v= -cosx|=-xcosx-∫-cosxdx= -xcosx+sinx.
Ф-цию вида R(x,mÖ(ax+b)/(cx+d) –называют дробно линейной ирр-тью. С помощью замены t=mÖ(ax+b)/(cx+d) рационализируем интеграл. tm= (ax+b)/(cx+d); x=(b-dtm)/(ctm-a) –рацион ф-ция от t; dx=(mtm-1(ad-bc)dt)/(ctm-a)²ÞòR(x,mÖ(ax+b)/ (cx+d))dx=òR((b-dtm)/ (ctm-a),t) (mtm-1(ad-bc)dt)/(ctm-a)²= òR1(t)dt. R1(t)-рацион-ая. Вида òR(x,Öax²+bx+c)dx, -квадр-ая ирр-ть где а, b, c=const. Если трёхчлен ax²+bx+c имеет действит корни х1 х2 то ax²+bx+c=a(x-x1)(x-x2) и R(x,Öax²+bx+c)=R(x,(x-x1)Ö(x-x2)a/(x-x1)=R1(x,Ö(x-x2)/(x-x1); пусть ax²+bx+c не имеет действит корней и а>0. Тогда подстановка (Эйлера) t=Ö(ax²+bx+c) +xÖaÞax²+bx+c=t²-2xtÖa+ax²; x=(t²-c)/2t(Öa)+b –рацион функ-ция от t Ч.Т.Д;Если а<0 с>0 (ax²+bx+c)>=0) то можно сделать замену Öax²+bx+c=xt+Öc {}{}Опред интеграл. Ограниченность интегрируемой ф-ии. {O}Разбиением t[a,b] называется произвольное мн-во точек xi, I=0,1,…,it удовлетворяющее условию x0=a<x1<x2<…<xit-1<xit{} Каждый из отрезков [xi-1,xi] назыв отрезком разбиения t{} Пусть ф-ция y=f(x) определена на [a,b] и t произвольное разбиение этого отрезка, в каждом отрезке разбиения в произвольном образе выберем (.) xiÎ[xi-1,xi] I=1,..,it и рассмотрим сумму st(f,x1,…,xit)= åI=1ixf(xI)Dx; -интегральная сумма {Определение} Число I –называется опред ò ф-ции y=f(x) на отр[a;b] и обозначается aòbf(x)dx Если "E>0 $dE=d(E)>0 | при любом разбиении s мелкости |t|<dE и любом выборе (.) xiÎ[xi-1,xi], I=1,…,it | åI=1itf(xi)Dx-I | <E Приэтомпишут I=limst |t|®0. {T}Если ф-ция интегрируема на отр. [a,b] то она ограничина на этом отрезке {Док-во} Пусть ф-ция y=f(x) интегрируема на [a,b] но не является ограниченным. на этом отрезке. На этом отрезке рассмотрим произвольное разбиение t отрезка [a,b] то она ограничена хотя бы на одном на одном отр. разбиения. Пусть это будет отр.[xj0-1,xj0] Тогда на этом отрезке существует последов-ть точек $ {xnjo}>0 | limn®¥f(xnjo)=¥ Рассмотрим сумму st=åI=1itf(xI)Dxi=f(xio)Dxjo +åI=1itf(x)Dxi=f(xjo)Dxjo+B Зафиксируем произвольным образом xiÎ[xi-1,xi] i¹jolimst(f,x1,…,x0n,..,xit) =lim(f(xjo)Dxjo+B)=¥m>0 существует n0 | st(f,x1,…,xjo(n),…,xit)>m Отсюда Þ, что интегр сумма при мелкости разбеения |t|®0 не могут стремится ни к какому конечному результату. Предположим, что $I=lim|t|®0stÞ"E>0 $dE>0 | "t, |t|<dE и любой выбор точек xi вып-ся нер-во |dt-I|<EÞ|dt|=|dt-I+I|<|dt-I|+|I| <E+|I|; M=E+|I| при любом разбиении t в частности при при |t|<dE можно выбрать точки x1,..,xit такие, что |st|>MÞф-ция не может быть не ограничена на отр[a,b]. Ч.Т.Д.Ф-ла Ньтона-Лейбница aòbf(x)dx=Ф(b)-Ф(а)=Ф(х)|аb –(1) {T} (основная теорема интегрального исчисления) Пусть ф-ция y=f(x) непрерывна на [a,b] и Ф(х)-какая либо из её первообразных. Þ (1) {Док-во} F(x)=aòxf(t)dtтогда ф-ции F(x) и Ф(x) первообразные для f(x) на [a,b] $F(x)=Ф(х)+С; aòxf(t)dt=Ф(х)+С Если x=a то aòаf(t)dt=0 Þ 0=Ф(а)+СÞ С=-Ф(а)Þaòxf(t)dt=Ф(х)-Ф(а) Поллагая в равенстве x=b приходим к вормуле (1) Ч.Т.Д.
18.Равномерная сх-сть ф-ых послед-стей и рядов.Признак Вейерштрасса.Ф-циональную посл-сть {fn)x)} xÎE наз. равномерно сходящейся ф-цией f на м-ж Е, если для Îe >0, сущ номер N, такой, что для " т х ÎE и "n >N вып-ся: |fn(x)-f(x)|<e. Если м-ж {fn)x)} равномерно сх-ся на м-ж Е, то она и просто сх-ся в ф-ции f на м-ж. Е тогда пишут: fn-f.
наз. равномерно сх-ся рядом, если на м-ж Е равномерно сх-ся посл-сть его частичной суммы., т. е. равномерная сх-сть ряда означает:Sn(x) -f(x) Не всякий сходящийся ряд является равномерно сх-ся, но всякий равномерно сх-ся – есть сх-ся Т. (Признак Вейерштрасса равномерной сх-ти ряда): Если числовой ряд: (7), где a >=0 сх-ся и для "xÎE и "n = 1,2… если выполняется нер-во un(x)|<=an(8), ряд (9) наз абс-но и равномерно сх-ся на м-ж Е.Док-ва:
Абсолютная сх-сть в каждой т. х следует из неравенства (8) и сх-ти ряда (7). Пусть S(x) – сумма ряда (9), а Sn(x) – его частичная сумма.
Зафиксируем произвольное e >0 В силу сх-ти ряда (7) сущ. номера N, "n >N и вып. нерво
. Следовательно: |S(x)-Sn(x)| = . Это означает, что Sn(x) -S(x) что означает равномерную сх-сть ряда..20. Радиус сх-ти и интервал сх-ти степенного ряда.Рассмотрим степенной ряд:
(1) Число (конечное или бесконечное) R>=0 наз радиусом сх-ти ряда (1) если для любого х такого, что |x|<R ряд (1) сх-ся, а для " х таких. что |x|>R ряд расх-ся интервалом сх-ти.Т1 Для всякого степенного ряда (1) сущ-ет радиус сх-ти R 0<=R<=+¥ при этом, если |x|<R, то в этой т. х ряд сх-ся абс-но. Если вместо х взять у = х-х0, то получится: интервал сх-ти: |x-x0<R| будет: (x0-R, x0+R)При этом если |x-x0|<R, то ряд сх-ся в т. x абс-но иначе расх-ся. На концах интервала, т. е. при x = -R, x=+R для ряда (1) или x = x0-R, x=x0+R для ряда (3) вопрос о сх-ти решается индивидуально. У некоторых рядов интервал сх-ти может охватывать всю числовую прямую при R = +¥ или вырождаться в одну точку при R=0.Интервал на числовой оси состоящий из т. х для которых |x|<R, т. е. (-R, +R) наз. Т2 Если для степенного ряда (1) сущ-ет предел (конечный или бесконечный): , то радиус сх-ти будет равен этому пределу. Если сущ-ет предел степенного ряда, то радиус сх-ти равен 1/пределот ряда Если степенной ряд (1) имеет радиус сх-ти R>0, то на любом отрезке действительной оси вида |[-r,r] целиком лежащем внутри интервала сх-ти ряд (1) сх-ся равномерно.На любом отрезке |x-x0|<=r сумма степенного ряда является непрерывной ф-цией.
Если ф-ция f(x) на интервале (x0-R, x0+R) является суммой ряда, то она дифференцируема на этом интервале и её производная f’(x) находится дифференцированием ряда. Степенной ряд можно почленно интегрировать на любом отрезке целиком принадлежащем интервалу сходимости при этом полученный степенной ряд имеет тот же радиус сходимости что и исходный ряд.
21. Разложение ф-ций в степенные ряды. Ряды Тейлора и Маклорена.
Пусть
(1) сх-ся при |x-x0|<R а его сумма является ф-лой f(x)= (2) В этом случае говорят, что ф-ция f(x) разложена в степенной ряд. (1). Т1 Если ф-ция f распространяется в некоторой окрестности т. х0 f(x)= , то и справедлива формула: (15) Если в некоторой окрестности заданной точки ф-ция распадается в степенной ряд, то это разложение единственно.Пусть дествит. ф-ция f определена в некоторой окрестности т. х0 и имеет в этой точке производные всех порядков, тогда ряд:
(6) наз рядом Тейлора ф-ции f в т, х0 При х0=0 ряд Тейлора принимает вид: (6’) и называется ряд Маклорена.Ряд Тейлора может:
1 Расх-ся всюду, кроме х=х0
2 Сх-ся, но не к исходной ф-ции f(x), а к какой-нибудь другой.
3 Сх-ся к исходной ф-ции f(x)
Бесконечная дифференцируемость ф-ции f(x) в какой-то т. х0 является необходимым условием разложимости ф-ции в ряд Тейлора, но не является достаточным. Для введения доп-ных условий треб. ф-ла Тейлора.
Т2 Если ф-ция f(x) (n+1) дифф-ма на интервале (x0-h, x0+h) h>0, то для всех xÎ (x0-h, x0+h) имеет место ф-ла Тейлора:
где остаток rn(x) можно записать:
(8) (9)Формула (8) наз остаточным членом ф-лы Тейлора в интегральной форме. Ф-ла (9) – формулой Лагранжа.