Преобразуя ф-лу Тейлора при х0 = 0 получаем ф-лу Маклорена.
Т3 Если ф-ция f(x) имеет в окрестности т х0 производные любого порядка и все они ограниченны одним и тем же числом С, т е "xÎU(x0) |f(n)(x)|<=C, то ряд Тейлора этой ф-ции сх-ся в ф-ции f(x) для всех х из этой окрестности.
22. Разложение элементарных ф-ций в ряд Тейлора (Маклорена). 1 Разложение ф-ции ех
Разложение ф-ции ln(1+x)
сх-ся при –1<x<=1
5 Разложение arctgx в степенной ряд Маклорена
сх-ся при -1<=x<=1.