Смекни!
smekni.com

Основные понятия математического анализа (стр. 1 из 3)

1. Определение неопред. интеграла. Если ф-ия F(x) – первообр для ф-ии f(x) на промежутке [a,b], то мн-о ф-ий F(x)+C, где С =const, назыв неопред интегр от ф-и f(x) на этом промежутке: ∫f(x)dx=F(x)+C При этом ф-я f(x) назыв подынтегр ф-ей, f(x)dx – подынтегр выр-ем, х – переменной интегр-я.

2.Опред-ие первообр от непрерыв ф-ии. Ф-ия F(x) назыв первообр для ф-ии f(x) на промежутке [a,b], если для всех значений х из этого промежутка вып- я F’(x)=f(x). Если ф-ия f(x), хЄ[a,b] – непрерыв, то для нее сущ-ет первообразная (неопред. Интеграл)

4. Выр-ие (∫f(x)dx). Производная неопред интеграла = подынтегр ф-ии. (∫f(x)dx)’=f(x). Док-во: (∫f(x)dx)’= =(F(x)+C)’= F’(x)= f(x)dx

5. Выр. ∫dF(x)Неопред интеграл от дифф-ла некоторой ф-ии = сумме этой ф-ии и произвольной постоянной ∫dF(x)=F(x)+C.Так как ∫dF(x)= F’(x)dx, то ∫F’(x)dx=F(x)+C. Теорема: Если ф-я F(x) является первообр ф-ии f(x) на отрезке [a,b], то мн-во всех первообр ф-ии f(x) задается формулойF(x)+C, С=const.

Док-во: F(x)+C – первообр, тогда (F(x)+C)’= F’(x)+C’= F’(x)=f(x) Ф(х) – -тоже первообразная: Ф’(х)=f(x), xЄ[a,b]. (Ф(х)-F(x))’= Ф’(х)-F’(x)=f(x)- f(x)=0 =>Ф(х)-F(x)=C, С-const. Таким образом Ф(х)=F(x)+С. Ф-ия, производ которой на некотором промежутке Х равна 0, постоянна на этом промежут-ке. φ’(x)=0 => φ(x)=C, для каждого хЄ[a,b], тогда для каждого х1,х2 Є [a,b], х1<х2. По теореме Лангранжа: φ(x2)- φ(x1)=0, φ(x)=С

6. Если k-const, ненулевое число, то ∫kf(x)dx=kf(x)dxk можно вынести из-под знака интеграла. Пусть F(x) – первообр для ф-ии f(x), т.е. F’(x)=f(x), тогда kF(x)-первообр для ф-ии kf(x): (kF(x))’=kF’(x)=kf(x). -k∫f(x)dx=k[C+(x)F]=kF(x)+C1=∫kf(x)dx, где С1=kC 7. Если ∫f(x)dx=F(x)+C, то и ∫f(u)du= F(u)+C, u=φ(x) – произвольная ф-ия, непрерывн, дифферен-я. f(x)-непрерыв. => ∫f(x)dx=F(x)+C, u=φ(x)-непрерыв. дифферен.ф-я. F(u)=F(φ(x)) –согласно инвариантности первого дифф-ла. Инвариантность первого дифф-ла: y=f(x) dy=f’(x)dxy=f(u), u=φ(x)– непрерыв, диф-я dy=f’(x)dudF(u)=F’(u)du= =f(u)du ∫f(u)du=∫d(F(u))=F(u)+C

8. Выражение d(∫f(x)dx)=f(x)dx - Дифференциал от неопред интегр = подынтегр выр-ю. d(∫f(x)dx)=d(F(x)+C) =dF(x)+dC=F’(x)dx+0=f(x)dx

9. Интеграл ∫[f(xg(x)]dx= ∫f(x)dx±∫g(x)dx –неопред интеграл от алгебраической суммы двух ф-ий равен алгебраической суммe интегр от этих

ф-ийвотдельности: Пусть F(x) и G(x) – первообразныедляф-ий f(x) и g(x): ∫[f(x)+g(x)]dx=∫(F’(x)+G’(x))dx=∫(F(x)+G(x))’dx=∫d(F(x)+G(x))= F(x)+G(x)+C= F(x)+G(x)+C1+C2=F(x)+C1+G(x)+C2 =∫f(x)dx+∫g(x)dx.

10. Вывод формулы замены переменного в неопред интегр (подстановка).Пусть ф-я x=φ(t) опред-на и диф-ма на некотором промежутке Т и Х-мн-во значений этой ф-ии, на кот. определена ф-я f(x). Тогда, если на мн-е Х ф-я f(x) имеет первообр, то на мн-ве Т справедлива фор-ла: ∫f(x)dx= ∫f[φ(t)]φ’(t)dt Док:Пусть F(x)-первообр для f(x) на мн-ве Х. Рассмотрим на мн-ве Т сложную ф-ю F[φ(t)]: (F[φ(t)])’= Fx’[φ(t)]φ’(t) =f[φ(t)]φ’(t), т.е. ф-я f[φ(t)]φ’(t) имеет на мн-ве Т первообр F[φ(t)] >∫f[φ(t)]φ’(t)dt=F[φ(t)]+C,Замечая что F[φ(t)]+C=F(x)+C= ∫f(x)dx, =>получаем ∫f(x)dx= ∫f[φ(t)]φ’(t)dt.

Дарбу: Mn=sup (f(x)); mn=inf (f(x)), xÎ(xi-1; xi) Sρ=å Mn∆xi – верхний; Sρ=å mnxi- нижний; СВ-ВА:

1,"верхняя сумма >=нижней; 2, при изменеии разбиения верхняя не увел, нижняя не умень.; 3, измельчение разбиения-добовлене нескольких точек0=<Sρ-I<e -для верх и ниж - Лемма.

11. Вывод формулы интегрир по частям. Пусть ф-ии u(x) и v(x) определены и диф-мы нанекотором пром-ке Х и пусть ф-я u’(x)v(x) имеет первообр на этом пром-ке. Тогда на пром-ке Х ф-я u(x)v’(x) также имеет перво-ю и справедлива формула: ∫u(x)v’(x)dx=u(x)v(x)-∫v(x)u’(x)dx. Док-во: [u(x)v(x)]’= u’(x)v(x)+u(x)v’(x) -u(x)v’(x)=[u(x)v(x)]’-u’(x)v(x)Первообр ф-ии [u(x)v(x)]’ на пром-ке Х является ф-я u(x)v(x). Ф-я u’(x)v(x) имеет первообр на Х по условию теор. -, и ф-я u(x)v’(x) имеет пер-ю на Х.Интегр-уя последнее рав-во получаем: ∫u(x)v’(x)dx=u(x)v(x)-∫v(x)u’(x)dx. Так как v’(x)dx=dv,u’(x)dx=du, то ее можно записать в виде: ∫udv=uv-∫vdu По лекциям: d(uv)=udv+vdu;∫d(uv)= ∫udv+vdu => ∫udv=∫d(uv)-∫vdu=uv-∫vdu Теорема о существовании конечного.

12. Определение дробно рациональной ф-ии. Понятие правильной и неправильной рациональной фун-ии. Простейшие дроби вида 1-4.Фун-ия вида Pn(x)=anxn+ an-1xn-1 +…+ a1x1+a0, n – натуральное число. ai, i=0, n=const называется мн-ном n-ой степени.

Определение: Дробно рацион фун-й (рациональной дробью) назыв фун-ия равная отношению 2-х мн-нов: f(x)= Pm(x)/ Qn(x), Pm(x)-мн-eн степени m, Qn(x)-многочлен степени n. Рацион дробь назыв правильной, если m<n. Иначе неправильной. P(x)/Q(x)= S(x)+R(x)/Q(x).Пример(деление дроби). Простейшие дроби 4 вида

1)A/(x-a)

2)A/(x-a)k k>=2 целое

3)(Mx+n)/(x2+px+q) x2+px+q=0, D<0

4) (Mx+n)/(x2+px+q)kk>=2

предела интегральных сумм для непрерывных ф-ий: Пусть сущ f.

13. Если х=а – действит корень кратности k знамен-ля Qn(x) прав-ой рацион дроби, т.е. Qn(x)=(х-а)kÕn-k(x) Тогда дробь будет представляться в виде суммы 2 правильных дробей: Pm(x)/Qn(x)=A/(х-а)k+Rs(x)/(х-а)k-1Õn-k(x) A-некоторая постоянная, s<n-1 Док-во: Pm(x)/Qn(x)=[A Õn-k(x)+ Pm(x)-AQn-k(x)]/[(х-а)kÕn-k(x)]=[ A Õn-k(x)]/ [(х-а)kÕn-k(x)]+[ Pm(x)-AQn-k(x)]/ [(х-а)kÕn-k(x)]=A/(х-а)k+[Pm(x)-AQn-k(x)]/ [(х-а)kÕn-k(x)], для каждого А. х=а – корень ура-я Pm(x)- A Õn-k(x)=0; Pm(а)- A Õn-k(а)=0; Pm(а)≠0 и A Õn-k(а)≠0; A= Pm(а)/A Õn-k(а); Pm(x)- A Õn-k(x)=(x-a) Rs(x); Pm(x)/Qn(x)= A/(х-а)k+[(x-a) Rs(x)]/[(x-a) Õn-k(x)]= A/(х-а)k+ Rs(x)/[(х-а)k-1 Õn-k(x)]; A= Pm(а)/Õn-1(а).

14. Если Qn(x)= (x2+px+q)µ Тn(x), где p2-4q<0, Тn(x) мн-ен не делится на x2+px+q, то правильную рацион дробь Pm(x)/Qn(x) можно представить в виде суммы 2 правильных: Pm(x)/Qn(x) =(Mx+N)/ (x2+px+q)µ +Фs(x)/[ (x2+px+q)µ-1. Тn(x)],µ,N-нек постоянные, s<n-1 Док-во: Pm(x)/Qn(x) =[(Mx+N) Тn(x)+ Pm(x)-(Mx+N) Тn(x)]//(x2+px+q)µ Тn(x)]= (Mx+N)/(x2+px+q)µ+ [Pm(x)-(Mx +N) Тn(x)]/[ (x2+px+q)µ Тn(x)] для люб µ и N. x2+px+q=0, D<0, x12=α±iβ, µ и N: Pm (α+iβ)-[ µ (α+iβ)+N]*Tn(α+iβ)=0. µ (α+iβ)+N=[ Pm (α+iβ)] /[ Tn(α+iβ)]=k+il. Система{ µ α+N =k=> N=k- α(L/b) µb=L=> m=L/bPm(x)/Qn(x)=(Mx+N)/(x2+px+q)µ s(x)/[ (x2+px+q)µ-1Тn(x)]конечному пределу при ранге разбиения - 0.

15. Разложение рацион дроби на простейшие. Если рацион ф-я R(x)/Q(x) имеет степень мн-на в числ-ле < степени мн-на в знамен-ле, а мн-н Q(x) представлен в виде Q(x)= A(x-a)r(x-b)s…(x2+2px+q)t(x2+2ux+v)z…, где a,b,.., p,q,u,v,…-вещественные числа, то эту ф-ю можно единств образом представить в виде:R(x)/Q(x) =A1/(x-a)+A2/(x-a)2+…. An/(x-a)n+…. (M1x+N1) / (x2+2px+q)+ (M2x+N2)/ /(x2+2px+q)2+…+(Mkx+Nk)/(x2+2px+q)k+, где А1,А2,.М1..N1-вещест числа

16. Определение дробно рацион фун-ии. Понятие правильной и неправ-ной рациональной фун-ии. Простейшие дроби вида 1-4.Фун-ия вида Pn(x)=anxn+ an-1xn-1 ++ a1x1+a0, n– натуральное число. ai, i=0, n=const называется мн-ном n-ой степени.

Определение: Дробно рацион фун-uей (рациональной дробью) назыв фун-ия равная отн-ю 2-х мн-нов:f(x)= Pm(x)/ Qn(x), Pm(x)-мн-eн степени m, Qn(x)-многочлен степени n. Рацион дробь назыв правильной, если m<n. Иначе неправильной. P(x)/Q(x)= S(x)+R(x)/Q(x).Пример(деление дроби). Простейшие дроби 4 вида

1)A/(x-a) 2)A/(x-a)k k>=2 целое

3)(Mx+n)/(x2+px+q) x2+px+q=0, D<0

4) (Mx+n)/(x2+px+q)k k>=2

17. Вычисление интегралов от тригонометрических ф-ий.

1) ∫R(sinx, cosx)dx Замена перем-ных tg(x/2)=t (универ. тригонометр замена)sinx=2t/(1+t2) cosx=(1-t2)/ /(1+t2)dx=2/(1+t2)dt;∫R(2t/(1+t2), (1-t2)/ /(1+t2)) 2/(1+t2)dt=∫Ř(t)dt

2)∫R(sinx) cosxdx=|sinx=t, cosxdx=dt|=∫R(t)dt

3)∫R sinx(cosx)dx=|cosx=t, -sinxdx=dt|=-∫R(t)dt

4) ∫R(tgx)dx=|t=tgx, x=arctgt, dx=dt/(1+t2)|= ∫R(t)dt/(1+t2)5) R(sinx, cosx)= R(-sinx, -cosx)

∫R(sinx, cosx)dx=|t=tgx, dx = dt/(1+ t2)| =∫Ř(t)dt

6) ∫sin m x cos n xdx

a)m=2k+1 ∫sin 2k x cos n x sinxdx=∫(1-cos 2 x)k cos n x sinxdx=|t=cosx, dt=-sinxdx|=-∫(1-t 2)k t n dt

b)n=2k+1 ∫sin m x cos 2k x cosxdx= ∫sin m x (1-sin 2 x)k dsinx

7) ∫sin 2p x cos 2a xdx sin2x=(1-cos2x)/2

cos2x=(1+cos2x)/2 sinxcosx=(1/2)sin2x

8) m=-µ n=-ν замена t=tgx

1/ sin2x=1+ ctg2x 1/ cos2x=1+tg2x

9) ∫tgmxdx; ∫ctgmxdx, m-целое >0ое tg2x=1/ cos2x-1

сtg2x=1/ sin2x-1

10) ∫sinmxcosnxdx ∫sinmxsinnxdx

∫cosmxcosnxdxsinmxcosnx=(1/2)(sin(m+n)x+sin(m-n)x)