Геометрический смысл дифференциала
Рассмотрим функцию y=f(x) и соответствующую ей кривую. Возьмем на кривой произвольную точку M(x; y), проведем касательную к кривой в этой точке и обозначим через α угол, который касательная образует с положительным направлением оси Ox. Дадим независимой переменной x приращение Δx, тогда функция получит приращение Δy = NM1. Значениям x+Δx и y+Δy на кривой y = f(x) будет соответствовать точка
M1(x+Δx; y+Δy).
Из ΔMNT находим NT=MN·tg α. Т.к. tg α = f '(x), а MN = Δx, то NT = f '(x)·Δx. Но по определению дифференциала dy=f '(x)·Δx, поэтому dy = NT.
Таким образом, дифференциал функции f(x), соответствующей данным значениям x и Δx, равен приращению ординаты касательной к кривой y=f(x) в данной точке х.
Теорема об инвариантности дифференциала
Ранее мы видели, что если u является независимой переменной, то дифференциал функции y=f '(u) имеет вид dy = f '(u)du.
Покажем, что эта форма сохраняется и в том случае, когда u является не независимой переменной, а функцией, т.е. найдем выражение для дифференциала сложной функции. Пусть y=f(u), u=g(x) или y = f(g(x)). Тогда по правилу дифференцирования сложной функции:
Следовательно, по определению
но g'(x)dx= du, поэтому dy= f'(u)du.
Мы доказали следующую теорему.
Теорема. Дифференциал сложной функции y=f(u), для которой u=g(x), имеет тот же вид dy=f'(u)du, какой он имел бы, если бы промежуточный аргумент u был независимой переменной.
Иначе говоря, форма дифференциала не зависит от того, является аргумент функции независимой переменной или функцией другого аргумента. Это свойство дифференциала называется инвариантностью формы дифференциала.
Пример.
Учитывая свойство инвариантности дифференциала, находим
Применение дифференциала к приближенным вычислениям
Пусть нам известно значение функции y0=f(x0) и ее производной y0' = f '(x0) в точке x0. Покажем, как найти значение функции в некоторой близкой точке x.
Как мы уже выяснили приращение функции Δyможно представить в виде суммы Δy=dy+α·Δx, т.е. приращение функции отличается от дифференциала на величину бесконечно малую. Поэтому, пренебрегая при малых Δx вторым слагаемым в приближенных вычислениях, иногда пользуются приближенным равенством Δy≈dyили Δy»f'(x0)·Δx.
Т.к., по определению, Δy = f(x) – f(x0), то f(x) – f(x0)≈f'(x0)·Δx.
Откуда
f(x) ≈ f(x0) + f'(x0)·Δx |
Примеры:
1. y = x2 – 2x. Найти приближенно, с помощью дифференциала, изменение y (т.е. Δy), когда x изменяется от 3 до 3,01.
Имеем Δy≈dy=f'(x)·Δx.
f'(x)=2x – 2 ,f'(3)=4, Δx=0,01.
Поэтому Δy ≈ 4·0,01 = 0,04.
2. Вычислить приближенно значение функции
Пусть x0= 16.
Тогда Δx = x – x0= 17 – 16 = 1,
Таким образом,
3. Вычислить ln 0,99.
Будем рассматривать это значение как частное значение функции y=lnx при х=0,99.
Положим x0 = 1. Тогда Δx = – 0,01, f(x0)=0.