Реферат з курсу “Введение в численные методы”
Тема: “ПРЯМЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ”
Содержание
1. Метод последовательных приближений
2. Метод Гаусса-Зейделя
3. Метод обращения матрицы
4. Триангуляция матрицы
5. Метод Халецкого
6. Метод квадратного корня
Литература
1.Метод последовательных приближений
Наиболее распространенными методами применительно к большим системам являются итерационные методы, использующие разложение матрицы на сумму матриц, и итерационные методы, использующие факторизацию матрицы, т.е. представление в виде произведения матриц.
Простая итерация: уравнение
приводится к виду , например, следующим образом: ,где
и содержат произвольную матрицу коэффициентов, по возможности желательно близкую к .Если выбрать A=H+Q так, чтобы у положительно определенной H легко находилась
, тогда исходная система приводится к следующему удобному для итераций виду: .В этом случае, при симметричной матрице A и положительно определенной Q итерационный процесс сходится при любом начальном
.Если взять H в виде диагональной матрицы D= , в которой лишь на главной диагонали расположены ненулевые компоненты, то этот частный случай называется итерационным методом Якоби.
2.Метод Гаусса-Зейделя
Метод Гаусса-Зейделя отличается тем, что исходная матрица представляется суммой трех матриц:
Подстановка в
и несложные эквивалентные преобразования приводят к следующей итерационной процедуре: .Различают две модификации: одновременную подстановку и последовательную. В первой модификации очередная подстановка выполняется тогда, когда будут вычислены все компоненты нового вектора. Во второй модификации очередная подстановка вектора выполняется в тот момент, когда будет вычислена очередная компонента текущего вектора. В векторно-матричной форме записи последовательная подстановка метода Гаусса-Зейделя выглядит так:
.Вторая форма требует существенно меньшее число итераций.
3.Метод обращения матрицы
Эквивалентные преобразования матрицы в произведение более простых, приводящих к решению или облегчающих его получение, начнем с рассмотрения метода обращения матрицы. Так как в общем виде решение системы представляется через обратную матрицу в виде
, то предположим, что ,тогда, умножив справа равенство на матрицу A , получим
.Отсюда можно сделать вывод, что матрицы
должны последовательно сводить матрицу A к единичной. Если преобразующую матрицу выбрать так, чтобы только один ее столбец отличался от единичных векторов-столбцов, т.е. , то вектор-столбец можно сформировать таким, чтобы при умножении на текущую преобразуемую матрицу в последней i-тый столбец превратился в единичный . Для этого берут и тогда .Фактически это матричное произведение преобразует все компоненты промежуточной матрицы по формулам, применяемым в методе исключения Гаусса. Особенность этого процесса заключается в том, что диагональные элементы исходной и всех промежуточных матриц не должны быть нулевыми.
Кроме обратной матрицы, равной произведению всех T-матриц, теперь можно получать и решения уравнений для любого вектора в правой части.
4.Триангуляция матрицы
Разложение исходной матрицы на произведение двух треугольных матриц (триангуляция матрицы) не является однозначной. В соответствии с этим имеется несколько различных методов, привлекательных с той или иной стороны.
Сам способ формирования уравнений или формул для вычисления элементов треугольных матриц в различных методах практически одинаков: это метод неопределенных коэффициентов.
Различия возникают на стадии выбора условий разрешения полученных уравнений. Пусть
,где
–нижняя треугольная матрица,
–верхняя треугольная матрица.
Выполняя перемножения треугольных матриц и приравнивая получающиеся элементы соответствующим элементам исходной матрицы несложно для k-той строки и m-того столбца записать
.Полученная система состоит из
уравнений и содержит неизвестных коэффициентов. За счет лишних n неизвестных существует свобода выбора, благодаря которой и имеется разнообразие методов разложения.5.Метод Халецкого
Если положить
, то разложение и последующее решение системы из двух векторно-матричных уравнений с треугольными матрицами называется методом Халецкого.Элементы треугольных матриц L и U последовательно будут вычисляться по следующим формулам:
Если исходная матрица симметричная, то от треугольных матриц можно потребовать, чтобы они были друг к другу транспонированными, т.е., например,
и так, что . В этом случае элементы треугольных матриц находятся в соотношении и, следовательно, число неизвестных уменьшается вдвое. В результате элементы треугольной матрицы могут вычисляться по следующим формулам:6.Метод квадратного корня
Использование разложения на взаимно транспонированные треугольные матрицы при решении систем алгебраических уравнений называется метод квадратного корня.
Метод разложения на транспонированные треугольные матрицы имеет модификацию, заключающуюся в выделении в произведении диагональной матрицы D с элементами на диагонали
. Таким образом, для исходной матрицы, которая может быть и эрмитовой (симметричной и комплексно сопряженной), разыскивается произведение трех матриц: .Каждое km-тое уравнение, определяется произведением k-того вектора-строки левой треугольной матрицы на диагональную матрицу, умноженную на m-тый столбец правой треугольной матрицы, и имеет вид:
.Для однозначного разложения, учитывая комплексную сопряженность симметричных элементов треугольных матриц, в первом уравнении (i=1), имеющем вид
, полагают . В этом случае .Аналогично, отделяя знак диагонального элемента диагональной матрицы от его модуля, можно получить формулы для вычисления
: