Смекни!
smekni.com

Прямые методы решения систем линейных алгебраических уравнений (стр. 1 из 2)

Реферат з курсу “Введение в численные методы

Тема: “ПРЯМЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ”

Содержание

1. Метод последовательных приближений

2. Метод Гаусса-Зейделя

3. Метод обращения матрицы

4. Триангуляция матрицы

5. Метод Халецкого

6. Метод квадратного корня

Литература


1.Метод последовательных приближений

Наиболее распространенными методами применительно к большим системам являются итерационные методы, использующие разложение матрицы на сумму матриц, и итерационные методы, использующие факторизацию матрицы, т.е. представление в виде произведения матриц.

Простая итерация: уравнение

приводится к виду
, например, следующим образом:

,

где

и
содержат произвольную матрицу коэффициентов, по возможности желательно близкую к
.

Если выбрать A=H+Q так, чтобы у положительно определенной H легко находилась

, тогда исходная система приводится к следующему удобному для итераций виду:

.

В этом случае, при симметричной матрице A и положительно определенной Q итерационный процесс сходится при любом начальном

.

Если взять H в виде диагональной матрицы D=

, в которой лишь на главной диагонали расположены ненулевые компоненты, то этот частный случай называется итерационным методом Якоби.

2.Метод Гаусса-Зейделя

Метод Гаусса-Зейделя отличается тем, что исходная матрица представляется суммой трех матриц:


.

Подстановка в

и несложные эквивалентные преобразования приводят к следующей итерационной процедуре:

.

Различают две модификации: одновременную подстановку и последовательную. В первой модификации очередная подстановка выполняется тогда, когда будут вычислены все компоненты нового вектора. Во второй модификации очередная подстановка вектора выполняется в тот момент, когда будет вычислена очередная компонента текущего вектора. В векторно-матричной форме записи последовательная подстановка метода Гаусса-Зейделя выглядит так:

.

Вторая форма требует существенно меньшее число итераций.

3.Метод обращения матрицы

Эквивалентные преобразования матрицы в произведение более простых, приводящих к решению или облегчающих его получение, начнем с рассмотрения метода обращения матрицы. Так как в общем виде решение системы представляется через обратную матрицу в виде

, то предположим, что

,

тогда, умножив справа равенство на матрицу A , получим

.

Отсюда можно сделать вывод, что матрицы

должны последовательно сводить матрицу A к единичной. Если преобразующую матрицу выбрать так, чтобы только один ее столбец отличался от единичных векторов-столбцов, т.е.
, то вектор-столбец
можно сформировать таким, чтобы при умножении на текущую преобразуемую матрицу
в последней i-тый столбец превратился в единичный
. Для этого берут

и тогда
.

Фактически это матричное произведение преобразует все компоненты промежуточной матрицы по формулам, применяемым в методе исключения Гаусса. Особенность этого процесса заключается в том, что диагональные элементы исходной и всех промежуточных матриц не должны быть нулевыми.

Кроме обратной матрицы, равной произведению всех T-матриц, теперь можно получать и решения уравнений для любого вектора в правой части.


4.Триангуляция матрицы

Разложение исходной матрицы на произведение двух треугольных матриц (триангуляция матрицы) не является однозначной. В соответствии с этим имеется несколько различных методов, привлекательных с той или иной стороны.

Сам способ формирования уравнений или формул для вычисления элементов треугольных матриц в различных методах практически одинаков: это метод неопределенных коэффициентов.

Различия возникают на стадии выбора условий разрешения полученных уравнений. Пусть

,

где

нижняя треугольная матрица,

верхняя треугольная матрица.

Выполняя перемножения треугольных матриц и приравнивая получающиеся элементы соответствующим элементам исходной матрицы несложно для k-той строки и m-того столбца записать

.

Полученная система состоит из

уравнений и содержит
неизвестных коэффициентов. За счет лишних n неизвестных существует свобода выбора, благодаря которой и имеется разнообразие методов разложения.

5.Метод Халецкого

Если положить

, то разложение и последующее решение системы из двух векторно-матричных уравнений с треугольными матрицами называется методом Халецкого.

Элементы треугольных матриц L и U последовательно будут вычисляться по следующим формулам:

Если исходная матрица симметричная, то от треугольных матриц можно потребовать, чтобы они были друг к другу транспонированными, т.е., например,

и
так, что
. В этом случае элементы треугольных матриц находятся в соотношении
и, следовательно, число неизвестных уменьшается вдвое. В результате элементы треугольной матрицы могут вычисляться по следующим формулам:


6.Метод квадратного корня

Использование разложения на взаимно транспонированные треугольные матрицы при решении систем алгебраических уравнений называется метод квадратного корня.

Метод разложения на транспонированные треугольные матрицы имеет модификацию, заключающуюся в выделении в произведении диагональной матрицы D с элементами на диагонали

. Таким образом, для исходной матрицы, которая может быть и эрмитовой (симметричной и комплексно сопряженной), разыскивается произведение трех матриц:
.

Каждое km-тое уравнение, определяется произведением k-того вектора-строки левой треугольной матрицы на диагональную матрицу, умноженную на m-тый столбец правой треугольной матрицы, и имеет вид:

.

Для однозначного разложения, учитывая комплексную сопряженность симметричных элементов треугольных матриц, в первом уравнении (i=1), имеющем вид

, полагают
. В этом случае

.

Аналогично, отделяя знак диагонального элемента диагональной матрицы от его модуля, можно получить формулы для вычисления

: