За расстояние между двумя точками M(х1, х2) и N(y1, y2) определению принимается длина вектора
:d(M,N)2=(y1 - x1) - (y2 - x2)2.
Величиной угла между векторами и
называется число, определенное по формуле (3.8)В правой части (3.8) числитель положительный, а знаменатель при неизотропных векторах ,
может быть положительным и отрицательным.Если векторы ,
одной природы, т. е. оба множителя в знаменателе одновременно пространственные или временные, то , если же один из векторов пространственный, а другой временный, то .Нетрудно далее доказать, что числитель в (3.8) не меньше знаменателя. Действительно, если координаты векторов и
будут соответственно (х1, х2) и (у1, у2) в некоторой прямоугольной системе координат, то .Следовательно, если векторы ,
одновременно будут пространственными или временными, то . (3.9)Полагая в этом случае
, получимВ псевдоевклидовой плоскости существует три типа прямых в зависимости от природы ее направляющего вектора, если направляющий вектор будет пространственным, временным или изотропным, то прямая называется соответственно пространственной, временной или изотропной.
г) Перейдем теперь к определению понятия окружности.
Окружностью в псевдоевклидовой плоскости называется множество ее точек, отстоящих от данной точки, называемой центром на одно и то же расстояние r; величина r называется радиусом окружности. Выбирая прямоугольную систему координат с началом в центре окружности, убедимся, что координаты текущей точки (х1, х2) данной окружности удовлетворяют уравнению
.В этой геометрии существует три типа окружностей - окружности вещественного, чисто мнимого и нулевого радиусов. На рис. 13 окружности нулевого радиуса изображаются с точки зрения евклидовой геометрии биссектрисами координатных углов, окружности вещественного радиуса - гиперболами, пересекающими ось Ох1и окружность чисто мнимого радиуса - гиперболами, пересекающими ось Ох2.
д) В заключение рассмотрим вкратце движения в псевдоевклидовой плоскости. Движение определяется как преобразование, соответствующие точки которого имеют одни и те же координаты относительно исходной и произвольно заданной прямоугольных систем координат. Как и в евклидовой геометрии доказывается, что движение является изометрией и, обратно, всякая изометрия является движением. Изометрия определяется как преобразование, сохраняющее расстояние между двумя произвольными точками. Как и в геометрии евклидовой плоскости, движения можно разделить
на собственные движения - движения с определителем
= 1 и несобственные - движения с определителем = - 1. Но теперь каждую из этих совокупностей в свою очередь можно разделить на две совокупности. Чтобы убедиться в этом, отметим предварительно следующие два замечания.Во-первых, ясно, что пространственные, временные и изотропные векторы при движениях остаются соответственно пространственными, временными и изотропными.
Во-вторых, при непрерывных вращениях вокруг данной точки векторы изотропного конуса отделяют в этой точке временные векторы от пространственных.
Перейдем теперь к дальнейшему разделению на части движений псевдоевклидовой плоскости. Нетрудно видеть, что в формулах
(3.11)определяющих вращение, величина
не обращается в нуль. В самом деле, предположим, что в (3.11) коэффициент равняется нулю. В таком случае пространственный вектор {1, 0} при вращении (3.11), перешел бы в вектор {0, }, который является временным, что невозможно. Таким образом, при изменениях координатных векторов , вызываемых непрерывными вращениями, коэффициент будет знакопостоянным.Следовательно, все движения делятся на четыре типа в зависимости от значения определителя преобразования
= 1 или = - 1 и знака > 0 или < 0.Представителями этих четырех типов будут, например, движения с матрицами:
Псевдоевклидово трехмерное пространство
а) обобщим построения псевдоевклидовой плоскости на трехмерные пространства. Аксиомы псевдоевклидова трехмерного пространства совпадают с аксиомами Вейля псевдоевклидовой плоскости, за исключением аксиом размерности III. Теперь в аксиоме III-I речь идет о существовании трех линейно независимых векторов, а в аксиоме III, 2 - всякие четыре вектора линейно зависимы.
Скалярное произведение двух векторов ,
в псевдоевклидовом пространстве будем обозначать, как и в случае псевдоевклидовой плоскости, символом . Векторы , - перпендикулярны, если их скалярное произведение равно нулю.Число
называется скалярным квадратом вектора. Длиной вектора называется корень квадратный из скалярного квадрата этого вектора и обозначается через : .Подкоренное выражение может быть >0, <0, и = 0. Длины векторов соответственно этим случаям будут вещественные, чисто мнимые и нулевые. Векторы вещественной длины называются также пространственными, векторы чисто мнимой длины — временными и векторы нулевой длины — изотропными.
В псевдоевклидовом пространстве вводится прямоугольная система координат. По определению так называется аффинная система координат, векторы которой
единичны или мнимоединичны и взаимно перпендикулярны. Будем рассматривать так называемое пространство Минковского, в котором из трех координатных векторов прямоугольной системы координат два единичные, а третий — мнимоединичный. Будем считать, что (3.12)В этой системе координат скалярное произведение двух векторов и квадрат длины вектора , очевидно, вычисляются по формулам вида