то предыдущее равенство можно переписать так:
Логарифмируя это равенство, имеем окончательно
(4.5)Эта формула показывает, что расстояние между двумя точками А и В равняется с точностью до множителя двойному отношению данных точек А, В и точек М, N пересечения прямой АВ с абсолютом.
Угол
между двумя лучами а, b, выходящими из точки С, также выражается через проективные понятия комплексной геометрии, Пусть т, nобозначают касательные к абсолюту, проходящие через точку С. Заметим, что прямые m, nнеобходимо комплексно сопряжены. Аналогично предыдущей формуле имеемМодель Бельтрами-Клейна примечательна тем, что прямые плоскости Лобачевского в ней изображаются в виде открытых отрезков прямых евклидовой плоскости. Она осуществляет геодезическое отображение плоскости Лобачевского на внутренность круга евклидовой плоскости.
Прежде чем перейти к другим моделям плоскости Лобачевского нужно сделать следующие два важных замечания. Во-первых, к модели Бельтрами-Клейна можно прийти на основе отображения плоскости Лобачевского на предельную поверхность, на которой осуществляется евклидова геометрия. Поэтому аксиомы геометрии Лобачевского здесь выполняются автоматически по отображению. Но приведенное здесь описание по отображению основных понятий позволяет в свою очередь прийти к этой модели самостоятельным образом, на основе доказательства выполнимости последовательно каждой аксиомы I — IV, V.
Во-вторых, к этой же модели Бельтрами-Клейна можно прийти, очевидно, проектированием в пространстве Минковского сферы чисто мнимого радиуса из ее центра на касательную к ней плоскость, например, в северном полюсе.
Предположим теперь, что абсолют с центром О модели Бельтрами-Клейна является большим кругом сферы. Ортогональное проектирование внутренности абсолюта на одну из полученных полусфер позволяет получить новую модель плоскости Лобачевского на полусфере. Затем стереографическое проектирование этой полусферы на исходную плоскость из полюса S, расположенного в другой полусфере, где отрезок OS перпендикулярен плоскости абсолюта, приводит к модели Пуанкаре внутри круга. Следовательно, в прежнем абсолюте прямыми теперь являются дуги окружностей, ортогонально пересекающие абсолют и диаметры абсолюта. Отношения инцидентности, лежать между и конгруентности углов имеют обычный смысл. Понятие конгруентности отрезков также соответствующим образом переносится из модели Бельтрами-Клейна.
Применяя затем дробно-линейное отображение комплексного переменного к внутренней области абсолюта, получим известную модель Пуанкаре на полуплоскости. В этой модели «точками» являются точки верхней полуплоскости, «прямыми» - полуокружности с центром на граничной прямой - абсолюте. К «прямым» причисляются также, полупрямые верхней полуплоскости, перпендикулярные к абсолютной прямой. Отношения инцидентности и лежать между понимаем в обычном смысле. Конгруентность углов в этой модели совпадает с евклидовой конгруентностью. Модель Пуанкаре представляет собою конформное отображение плоскости Лобачевского на евклидову полуплоскость.
Что касается понятия конгруентности отрезков, то оно определяется через движения или расстояние между двумя точками А и В, причем понятие расстояния между точками в последнем случае не предполагает измерения отрезков. По определению оно означает число.
(*)если точки A, В лежат на полуокружности или число
(**)если точки лежат на полупрямой, перпендикулярной граничной прямой XX. В этих формулах углы
, и ординаты у1 , у2 имеют обычный смысл, ясный из рисунка 29,д.Очевидно, всегда можем предполагать, что обозначение углов символами
, и ординат у1, у2для данных точек A, В осуществлено так, что правые части в (*), (**) положительны. Теперь нетрудно определяется конгруентность отрезков. Отрезки АВ и СD конгруентны, если расстояние между концами A, В одного отрезка равно расстоянию между концами С, Dдругого отрезка.Подчеркнем еще раз, что к модели Пуанкаре на полуплоскости мыпришли в результате отображения первой модели Пуанкаре во внутренности круга. Поэтому аксиомы Гильберта геометрии Лобачевского выполняются автоматически по отображению.
Приводимые здесь описания основных образов и отношений инцидентности, лежать между, конгруентности отрезков и углов позволяют прийти к этой модели Пуанкаре на полуплоскости самостоятельным образом, путем доказательства выполнимости каждой аксиомы гильбертовской аксиоматики.
В заключение остановимся на вопросе независимости 5-го постулата Евклида от остальных аксиом Гильберта. Согласно общей установке, изложенной в главе 1, достаточно построить какую-нибудь модель, на которой бы выполнялись все аксиомы Гильберта I - V за исключением аксиомы параллельности V. Аксиома эта, эквивалентная относительно аксиом I - IV утверждению 5-го постулата, состоит в следующем. Через точку А, не принадлежащую прямой а, можно провести в плоскости, определяемой этой точкой А и прямой а, не более одной прямой, не пересекающейся с данной прямой a.
Очевидно, любая модель геометрии Лобачевского, например, Бельтрами-Клейна позволяет доказать независимость аксиомы параллельности от предыдущих аксиом I - IV. Действительно, на этой модели выполняются все 19 аксиом I - IV, а аксиома V не выполняется. Отсюда заключаем, что при помощи аксиом I - IV, Гильберта невозможно доказать аксиому параллельности V. Другими словами, 5-й постулат Евклида нельзя вывести как теорему из предыдущих аксиом I - IV.
Заключение
Открытие неевклидовой геометрии, начало которому положил Лобачевский, не только сыграло огромную роль в развитии новых идей и методов в математике естествознании, но имеет и философское значение. Господствовавшее до Лобачевского мнение о незыблемости геометрии Евклида в значительной мере основывалось на учении известного немецкого философа И. Канта (1724-1804), родоначальника немецкого классического идеализма. Кант утверждал, что человек упорядочивает явления реального мира согласно априорным представлениям, а геометрические представления и идеи якобы априорны (латинское слово apriorозначает – изначально, заранее), то есть, не отражают явлений действительного мира, не зависят от практики, от опыта, а являются врожденными человеческому миру, раз и навсегда зафиксированными, свойственными человеческому разуму, его духу. Поэтому, Кант считал, что Евклидова геометрия непоколебима, неизменна, и является вечной истиной. Еще до Канта геометрия Евклида считалась незыблемой, как единственно возможное учение о реальном пространстве.
Открытие неевклидовой геометрии доказало, что нельзя абсолютировать представления о пространстве, что «употребительная» (как назвал Лобачевский геометрию Евклида) геометрия не является единственно возможной, однако это не подорвало незыблемость геометрии Евклида. Итак, в основе геометрии Евклида лежат не априорные, врожденные уму понятия и аксиомы, а такие понятия, которые связаны с деятельностью человека, с человеческой практикой. Только практика может решить вопрос о том, какая геометрия вернее излагает свойства физического пространства. Открытие неевклидовой геометрии дало решающий толчок грандиозному развитию науки, способствовало и поныне способствует более глубокому пониманию окружающего нас материального мира.
1. Большая Советская Энциклопедия, Гл. Ред.: А. М. Прохоров, издание 3-е, Москва, Советская Энциклопедия, 1969.
2. Глейзер Г.И. История математики в школе IX – X классы. Пособие для учителей. Москва, Просвещение 1983.
3. Даан Дальмедино А., Пейффер И. Пути и лабиринты. Очерки по истории математики. Перевод с французского. М: Мир.1986г.
4. Егоров И.П. Лекции по аксиоматике Вейля и неевклидовым геометриям, Рязань, 1973Ефимов Н.В., Высшая геометрия, Наука, М.,1971.
5. Егоров И. П. «Основания геометрии», М., «Просвещение», 1984.
6. Квант №11,№12 Академик АН СССР А.Д. Александров, Интернет-издания.
7. Клайн М., Математика. Утрата определенности, Мир, М., 1984
8. Лаптев Б.Л. Н.И. Лобачевский и его геометрия. Пособие для учащихся. М. Просвещение, 1970.
9. Математика XIX века, Наука, М., 1981.
10. Неевклидовы пространства и новые проблемы физики, Белка, М., 1993.
11. Розенфельд Б.А. Неевклидовы пространства, М., Наука,1969.
12. Широков П.А. Краткий очерк основ геометрии Лобачевского, М., 1955.
13. Юшкевич А.П., История математики в России, Наука, М., 1968.
14. Яглам И.М. Принцип относительности Галилея и неевклидова геометрия. Серия Библиотека математического кружка М: 1963.
[1] Под термином «прямая пересекает отрезок» мы подразумеваем, что указанная прямая содержит некоторую внутреннюю точку этого отрезка.
1 Из этой аксиомы вытекает возможность перемещения отрезка АВ вдоль прямой, на которой он лежит (с сохранением его длины и направления). Будем говорить, что направленный отрезок
получен в результате перемещения направленного отрезка , если отрезок CD конгруэнтен отрезку АВ и если либо отрезок AD лежит внутри отрезка ВС, либо отрезок ВС лежит внутри отрезка AD.