Рассмотрим задачу Коши для уравнения теплопроводности
,
,
, (3.5)
с условием на прямойt=0
,
. (3.6)
Требуется найти функцию , которая при
и
удовлетворяла бы уравнению (3.5), а при
выполняла бы условие (3.6).
Будем считать, что задача (3.5), (3.6) имеет в верхней полуплоскости единственное решение , непрерывное вместе со своими производными
, i=1, 2 и
, k=1, 2, 3, 4.
Запишем задачу (3.5), (3.6) в виде . Для этого достаточно положить
Будем далее считать, что t изменяется в пределах . В рассматриваемом случае
,
Г − объединение прямыхt=0иt=T.
Выберем прямоугольную сетку и заменим область сеточной областью
. К области
отнесем совокупность узлов
, где
,
,
,
,
,
,
.
Заменим задачу разностной схемой вида
. Обозначим через
точное значение решения задачи
в узле
, а через
– соответствующее приближенное решение. Имеем
Для замены выражений и
воспользуемся формулами численного дифференцирования. Имеем:
, (3.7)
, (3.8)
, (3.9)
(3.10)
Назовем некоторую совокупность узлов, привлекаемых для замены задачи в узле
, разностной схемой
,шаблоном. Наиболее употребительные шаблоны изображены на рис. 3:
Рис. 3. Явный и неявный шаблоны
Рассмотрим явный двухслойный шаблон. Для него
(3.11)
Здесь мы воспользовались формулами (3.7) и (3.10) и обозначили
.
Введем обозначение
(3.12)
Теперь на основании формул (3.11), (3.12) можно записать разностную схему для задачи :
, (3.13)
где разностный оператор определяется по правилу
Аналогично, если использовать неявный двухслойный шаблон, можно получить такую разностную схему:
, (3.14)
где
На основании формул (3.11) и (3.13) можно записать
,
где
Аналогично, используя(3.11),(3.10),(3.14), получим
,
.
Выясним порядок аппроксимации разностных схем (3.13) и (3.14). В качестве возьмем линейное множество всех пар ограниченных функций
.
Нормув определим правилом
Пусть , где rи s– некоторые положительные числа.
Предположим, что для и
верны оценки
,
.
Тогда легко получить
, (3.15)
. (3.16)
Для параболических уравнений, как мы увидим далее, в случае схемы (3.13) можно взять S=2, а в случае схемы (3.14) можно взятьS=1.
Из формул (3.15), (3.16) следует, что разностные схемы (3.13), (3.14) аппроксимируют задачу с погрешностью порядка Sотносительно h.
Разностная схема (3.13) позволяет по значениям решения на нулевом слое, то есть по значениям вычислить значения на первом слое
. Для этого достаточно в (3.13) положить n= 0и произвести вычисления, носящие рекурсионный характер. Потом по значениям
можно аналогично при n= 1 вычислить значения
и т.д. В силу этого разностную схему (3.13) называют явной.
Разностная схема (3.14) такими свойствами не обладает. Действительно, если мы в (3.14) положим n= 0, то в левой части полученной формулы будет линейная комбинация из значений , в правой части будут значения известной функции
и
. Для вычисления значений на первом слое
в этом случае необходимо решать бесконечную систему линейных уравнений. По этой причине схему (3.14) называют неявной.