Смекни!
smekni.com

Расчет вероятностей событий (стр. 1 из 3)

Задание №1

Какова вероятность того, что наудачу взятое натуральное число не делится:

а) ни на два, ни на три;

б) на два или на три?

Решение:

Пусть А – событие, что натуральное число делится на 2→ p(A)=1/2 (каждое второе натуральное число кратно 2)

В-событие, что натуральное число делится на 3

p(В)=1/3 (каждое третье натуральное число кратно 3)

а) С – событие, что наудачу взятое натуральное число не делится ни на два, ни на три

Вероятность произведения двух независимых событий А и В равна произведению их вероятностей

Тогда вероятность события С:

Т.е. пять из шести натуральных чисел не делится ни на 2 ни на 3

б) D– событие, что наудачу взятое натуральное число не делится на 2 или на 3

.

Вероятность суммы двух несовместных событий А и В равна сумме вероятностей этих событий

Тогда вероятность события D:

.

Т.е. одно из трех натуральных чисел не делится на 2 или на 3

Задание №2

В ружейной пирамиде имеются винтовки двух систем: одна винтовка типа 1 и две винтовки типа 2. Вероятность попасть в мишень при выстреле из винтовки типа 1 равна р1, из винтовки типа 2 – р2.

Стрелок производит 7 выстрелов из наудачу взятой винтовки. Чему равна вероятность того, что мишень окажется поражённой не менее пяти раз?

Решение:

А – событие, что поражена мишень

Пусть событие Н1 – винтовка I типа; событие Н2 – винтовка II типа.

и

А/Н1 – мишень поражена при выстреле из винтовки I типа

А/Н2 – мишень поражена при выстреле из винтовки II типа

Для нахождения вероятности

применяют формулу

2. Рn(k) – вероятность, что в n испытаниях событие наступит kраз находится по формуле Бернулли

.

Вероятность события, что мишень окажется поражённой не менее пяти раз, если произведено 7 выстрелов из наудачу взятой винтовки.

Задание №3

При измерении урожайности картофеля вес клубней в одном кусте распределился по интервалам следующим образом:

Х(кг) 2,5–2,7 2,7–2,9 2,9–3,1 3,1–3,3 3,3–3,5 3,5–3,7 3,7–4,3
К-во кустов 50 150 200 250 150 100 100

Построить гистограмму и найти средний вес одного куста.

Решение:

Гистограмма – служит для изображения интервальных рядов и представляет собой ступенчатую фигуру из прямоугольников с основаниями, равными интервалам значений признака

, и высотами, равными частотам
интервалов.

Для расчета среднего веса одного куста воспользуемся формулой средней арифметической.

Средней арифметической дискретного вариационного ряда

называется отношение суммы произведений вариантов на соответствующие частоты к объему совокупности:

где

- варианты дискретного ряда или середины интервалов вариационного ряда,
- соответствующие им частоты.

Для каждого интервала найдем середины по формуле

.
Х(кг) 2,5–2,7 2,7–2,9 2,9–3,1 3,1–3,3 3,3–3,5 3,5–3,7 3,7–4,3
2,6 2,8 3 3,2 3,4 3,6 4
К-во кустов 50 150 200 250 150 100 100

Ответ: средний вес одного куста составляет 3,22 кг.

Задание №4

По следующим данным построить интервальный вариационный ряд и гистограмму: 24, 14, 15, 26, 16, 17, 14, 15, 1, 11, 14, 12, 16, 17, 13, 10, 11, 12, 13, 15, 14, 10, 11, 14, 7, 15, 14, 15, 15, 14, 15, 14, 2, 5, 18, 19, 16, 17, 9, 10, 18, 19, 20, 22, 28.

Найти среднее значение, дисперсию и стандартное отклонение.

Решение:

1. Проранжируем[1] исходный ряд, подсчитаем частоту вариантов. Получим вариационный ряд

2. Для определения числа групп воспользуемся формулой Стерджесса:

n = 1+3,322 * lgN

где n – число групп, N =45 – число единиц совокупности

Для данных задачи n= 1 + 3,322*lg 45 = 1 + 3,322 * 1,65 = 6б49 » 6 групп

Величина интервала представляет собой разность между максимальным и минимальным значением признака в каждой группе.

3. Выполним промежуточные вычисления во вспомогательной таблице и определим значения числовых характеристик:

Середины интервалов

Средняя арифметическая

где
- варианты дискретного ряда или середины интервалов вариационного ряда,
- соответствующие им частоты.

Дисперсия

.

Среднее квадратическое отклонение

.

Значения № группы Интервалы Частота
1 1 нач кон
2 2 1 1,0 5,5 3
3 5 2 5,5 10,0 5
4 7 3 10,0 14,5 15
5 9 4 14,5 19,0 17
6 10 5 19,0 23,5 2
7 10 6 23,5 28,0 3
8 10
9 11
10 11
11 11
12 12
13 12
14 13
15 13
16 14
17 14
18 14
19 14
20 14
21 14
22 14
23 14
24 15
25 15
26 15
27 15
28 15
29 15
30 15
31 16
32 16
33 16
34 17
35 17
36 17
37 18
38 18
39 19
40 19
41 20
42 22 x min 1
43 24 x max 28
44 26 h 4,5
45 28
№ группы Интервалы Частота Промежуточные вычисления
нач кон сер ni xcp*ni (x-Xcp) (x-Xcp)2 ni*(x-Xcp)2
1 1,0 5,5 3,25 3 9,75 -10,9 118,81 356,43
2 5,5 10,0 7,75 5 38,75 -6,4 40,96 204,80
3 10,0 14,5 12,25 15 183,75 -1,9 3,61 54,15
4 14,5 19,0 16,75 17 284,75 2,6 6,76 114,92
5 19,0 23,5 21,25 2 42,50 7,1 50,41 100,82
6 23,5 28,0 25,75 3 77,25 11,6 134,56 403,68
45 636,75 1234,80
14,15 S2 27,44
5,24

Среднее значение

Дисперсия

Среднее квадратическое отклонение