Смекни!
smekni.com

Елементи комбінаторики. Початки теорії ймовірностей (стр. 5 из 7)

Р(А ∩В) = Р(А) • Р(В І А) = 0,96 • 0,75 = 0,72.

§ 10. Теорема про множення ймовірностей незалежних подій

Означення 1. Події А і В називаються незалежними, якщо настання однієї з подій не впливає на ймовірність настання другої події.

З цього означення випливає, що незалежні події- це такі дві рівності:

Р(А/В) = Р(А), Р(В/А) = Р(В).(1)

Теорема. Ймовірність одночасної появи двох незалежних подій дорівнює добутку ймовірностей цих подій.

Оскільки Р(А ∩В) = Р(А/В) • Р(В), то, враховуючи рівність (1), дістаємо

Р(А ∩ В) = Р(А) • Р(В).(2)

Навпаки, неважко довести, що виконання рівності (2) означає незалежність подій А і В. Справді, оскільки

то відповідно до означення умовної ймовірності праву частину цього виразу можна замінити на Р(А/В), тобто Р(А) = Р(А/В). Аналогічно дістаємо Р(В) = Р(В /А). Отже, рівність (2) гарантує незалежність подій.

Означення 2. Кілька подій називаються незалежними в сукупності, якщо будь-яка з них не залежить від будь-якої сукупності решти.

Для незалежних у сукупності подій має місце рівність

Формула (3) є узагальненням формули (2) на випадок будь-якої скінченної кількості незалежних у сукупності подій.

На практиці для перевірки незалежності подій рідко використовують означення. Частіше виходять з інтуїтивних міркувань, пов'язаних з характером випробування. Так, при підкиданні двох монет очевидно, що поява якої-небудь сторони на одній з них не впливає на умови підкидання іншої. Тому випадання будь-яких сторін на кожній з них є незалежними подіями.

Приклад 1. Імовірність безвідмовної роботи верстата протягом зміни дорівнює 0,9. Знайти ймовірність безвідмовної роботи двох верстатів протягом зміни.

Подія А - безвідмовна робота протягом зміни першого верстата, В -другого. Припускаючи, що події А і В є незалежними, за формулою (1) знайдемо

Приклад 2. Робітник обслуговує чотири однакових верстата. Ймовірність того, що будь-який верстат протягом години потребує уваги робітника, дорівнює 0,6. Припускаючи, що виходи з ладу будь-якого верстата ніяк не пов'язані між собою, знайти ймовірність того, що протягом години: а) усі чотири верстати потребують уваги робітника; б) жоден з верстатів не потребує уваги робітника.

а) Позначимо через А1, А2, А3, А4події, які полягають в тому, що протягом години потребують уваги робітника відповідно перший, другий, третій, четвертий верстати. Події А1, А2, A3, А4 є незалежними. Тому за формулою (3) дістанемо

б) Імовірність того, що протягом години верстат (будь-який) не потребуватиме уваги робітника, знайдемо за правилом відшукання ймовірності протилежної події:


§11. Формула повної ймовірності

Припустимо, що подія A може настати тільки разом з однією із попарно несумісних подій H1, H2,... Нп, які утворюють повну групу подій (рис. 307).

Теорема. Ймовірність подіїA, яка може настати лише за умови появи однієї із попарно несумісних подій Н1, H2, ... Нп, які утворюють повну групу, визначається за формулою

Р(А) = Р(А/Н1)·Р(Н1) + Р(А/Н2) ·Р(Н2) + ...+ Р(А/Нп) ·Р(Нп). (1)

Якщо подія А відбулася разом з однією із подій H1, H2,... Нп, то це означає, що відбулася одна із попарно несумісних подій A∩H1,A∩H2,... A∩Нп. Отже,

Тому, застосовуючи теорему про додавання ймовірностей несумісних подій, дістаємо

За теоремою множення довільних подій маємо


Підставивши рівність (3) у рівність (2), дістаємо рівність (1). Формулу (1) називають формулою повної ймовірності.

Приклад 3. Із першого автомата на конвеєр надходить 20 % деталей, з другого - 30 %, з третього - 50 %. Перший автомат дає в середньому 0,2 % бракованих деталей, другий - 0,3 %, третій - 0,1 %. Яка ймовірність того, що на конвеєр надійшла бракована деталь?

Позначимо події: Н1- дана деталь виготовлена першим автоматом, H2 - дана деталь виготовлена другим автоматом, H3 - дана деталь виготовлена третім автоматом, А - деталь, що надійшла на конвеєр, бракована.

За умовоюP(Н1) = 0,2; Р(H2) = 0,3; Р( Н3) = 0,5; Р(А/Н1) = 0,002; Р(А/Н2) = 0,003;Р(А/Н3) = 0,001.

За формулою повної ймовірності

P(А) = 0,002-0,2 + 0,003-0,3 + + 0,0010,5 = 0,0018.

§ 12. Імовірності гіпотез. Формула Байєса

Нехай подія А може настати за умови появи однієї з попарно несумісних подій H1, H2,... Нп, які утворюють повну групу. Через те, що заздалегідь невідомо, яка з цих подій настане, їх називають гіпотезами. Ймовірність появи події А визначається за формулою повної ймовірності.

Припустимо, що проведено випробування, внаслідок якого відбулася подія А. Виникає питання: як змінились (за умови того, що подія А вже відбулася) ймовірності гіпотез? Відповідь на це питання дає така теорема.

Теорема Байєса. Нехай H1, H2,... Нп- повна група попарно несумісних подій. Тоді

За теоремою множення довільних подій

Ліві частини рівностей (2) і (3) є однаковими. Тому рівними будуть і праві частини цих рівностей, тобто

звідки

Оскільки за формулою повної ймовірності

то, підставивши рівність (5) у рівність (4), дістанемо рівності (1).

Формули (1) називають формулами Байсса. Формули Байєса дають змогу переоцінити ймовірність гіпотез H1, H2,... Нп після того, як проведено випробування, внаслідок якого відбулася подія А. При цьому ймовірності Р(Нk) називають апріорними ( apriori - до досліду), а ймовірності Р(Нk / А) - апостеріорними (aposteriori - після досліду).

Приклад. У групі з 10 учнів, які прийшли на екзамен, 3 підготовлені відмінно, 4 - добре, 2 - посередньо і 1 - погано. Екзаменаційні білети містять 20 питань. Відмінно підготовлений учень у змозі відповісти на всі 20 питань, добре підготовлений - на 16, посередньо - на 10, погано - на 5. Учень, якого викликали, відповів на три довільно поставлених питання. Знайти ймовірність того, що цей учень підготовлений: а) відмінно; б) погано, х

Позначимо: А - учень відповів на три питання. Гіпотези: Н1 - учень, підготовлений відмінно, H2 - учень, підготовлений добре, H3- учень, підготовлений посередньо, H4 - учень, підготовлений погано.

Ймовірності гіпотез до екзамену

§ 13. Повторні випробування. Формула Бернуллі

Коли виконуються послідовні випробування, то за результатом кожного з них може відбутися або не відбутися деяка подіяA.

Нехай проводиться п випробувань (одноразових експериментів), причому ймовірність настання події А у кожному випробуванні Р(А) = р і не залежить від результатів інших випробувань. Такі випробування називаються незалежними. Оскільки ймовірність настання події А в одному випробуванні дорівнює p, то ймовірність її ненастання Р(Ặ) = 1 - р = q.

Знайдемо ймовірність того, що при п випробуваннях подія А настане рівно kразів (0<k<п). Виконавши п послідовних випробувань, матимемо різні комбінації результатів. Ті комбінації результатів, в яких подія відбудеться к разів, називатимемо сприятливими.

Визначимо ймовірність Р однієї сприятливої комбінації. Сприятливою комбінацією є добуток п незалежних у сукупності подій: kпояв події Ặ і п - kпояв події Ặ. Отже, за теоремою про ймовірність добутку подій, незалежних у сукупності, дістанемо, що ймовірність однієї сприятливої комбінації дорівнює

Здійснення складної події, яка полягає в тому, що подія А настає рівно kразів, рівносильна появі принаймні однієї сприятливої комбінації. Іншими словами, така складна подія є сумою всіх сприятливих комбінацій. Проте сприятливі комбінації попарно несумісні. Тому за теоремою про додавання ймовірностей попарно несумісних подій дістанемо ймовірність появи події А kразів при п випробуваннях:

де N - кількість усіх можливих комбінацій.

Залишається визначити N. Розглянемо спочатку приклад.

Нехай п = 3, k= 2. Сприятливими тут є такі комбінації результатів випробувань, коли з трьох випробувань подія А відбувається двічі. Позначатимемо появу події А знаком "+", а появу події Ặ знаком "-". Тоді сприятливі комбінації можна зобразити у вигляді рядків такої таблиці:


1 2 3
- - -
+ + -
+ - +
- + +

Очевидно, сприятливих комбінацій може бути стільки, скільки різних рядків у цій таблиці, а їх буде стільки, скількома способами можна розмістити два знаки "+" у трьох клітинках, тобто треба кожного разу з трьох клітинок вибрати дві. Очевидно, це можна зробитиC32способами. Отже,у цьому разі буде C32сприятливі комбінації результатів випробувань.