Смекни!
smekni.com

Математическая логика (стр. 1 из 7)

Введение

Тема контрольной работы «Математическая логика».

БУЛЬ или БУЛ, а также БУУЛ, Джордж (1815-1864) – английский математик, который считается основоположником математической логики.

Математическая логика – это раздел математики, посвященный анализу методов рассуждений, при этом в первую очередь исследуются формы рассуждений, а не их содержание, т.е. исследуется формализация рассуждений.

Формализация рассуждений восходит к Аристотелю. Современный вид аристотелева (формальная) логика приобрела во второй половине XIX века в сочинении Джорджа Буля “Законы мысли”.

Интенсивно математическая логика начала развиваться в 50-е годы XX века в связи с бурным развитием цифровой техники.

1. Элементы математической логика

Основными разделами математической логики являются исчисление высказываний и исчисление предикатов.

Высказывание – есть предложение, которое может быть либо истинно, либо ложно.

Исчисление высказываний – вступительный раздел математической логики, в котором рассматриваются логические операции над высказываниями.

Предикат – логическая функция от п переменных, которая принимает значения истинности или ложности.

Исчисление предикатов – раздел математической логики, объектом которого является дальнейшее изучение и обобщение исчисления высказываний.

Теория булевых алгебр (булевых функций) положена в основу точных методов анализа и синтеза в теории переключательных схем при проектировании компьютерных систем.

1.1 Основные понятия алгебры логики

Алгебра логики – раздел математической логики, изучающий логические операции над высказываниями.

В алгебре логики интересуются лишь истинностным значением высказываний. Истинностные значения принято обозначать:

1 (истина) 0 (ложь).

Каждой логической операции соответствует функция, принимающая значения 1 или 0, аргументы которой также принимают значения 1 или 0.

Такие функции называются логическими или булевыми, или функциями алгебры логики (ФАЛ). При этом логическая (булева) переменная x может принимать только два значения:

.

Таким образом,

- логическая функция, у которой логи-ческие переменные
являются высказываниями. Тогда сама логическая функция
является сложным высказыванием.

В этом случае алгебру логики можно определить, как совокупность множества логических функций с заданными в нем всевозможными логическими операциями. Таким логическим операциям, как конъюнкция (читается И), дизъюнкция (ИЛИ), импликация, эквивалентность, отрицание (НЕ), соответствуют логические функции, для которых приняты обозначения

(&, ·),
~, – (
), и имеет место таблица истинности:
x~y
0 0 0 0 1 1 1
0 1 0 1 1 1 0
1 0 0 1 0 0 0
1 1 1 1 1 0 1

Это табличный способ задания ФАЛ. Наряду с ними применяется задание функций с помощью формул в языке, содержащем переменные x, y, …, z (возможно индексированные) и символы некоторых конкретных функций – аналитический способ задания ФАЛ.

Наиболее употребительным является язык,содержащий логические символы

~, –. Формулы этого языка определяются следующим образом:

1) все переменные есть формулы;

2) если P и Q – формулы, то

P ~ Q,
- фор-мулы.

Например, выражение

~
- формула. Если переменным x, y, z придать значения из двоичного набора 0, 1 и провести вычисления в соответствии с операциями, указанными в формуле, то получим значение 0 или 1.

Говорят, что формула реализует функцию. Так формула

~
реализует функцию h(x, y, z):
x y z h(x, y, z)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Пусть P и Q – формулы, которые реализуют функции f (x1, x2, …, xn) и g (x1, x2, …, xn). Формулы равны: P = Q, если функции f и g совпадают, т.е. совпадают их таблицы истинности. Алгебра, основным множеством которой является все множество логических функций, а операциями – дизъюнкция, конъюнкция и отрицание, называется булевой алгеброй логических функций.

Приведем законы и тождества, определяющие операции

– и их связь с операциями
, ~:

1. Идемпотентность конъюнкции и дизъюнкции:

.

2. Коммутативность конъюнкции и дизъюнкции:

.

3. Ассоциативность конъюнкции и дизъюнкции:

.

4. Дистрибутивность конъюнкции относительно дизъюнкции и дизъюнкции относительно конъюнкции:


.

5. Двойное отрицание:

.

6. Законы де Моргана:

=
,
=
.

7. Склеивание:

.

8. Поглощение

.

9. Действия с константами 0 и 1:

.

10. Законы Блейка-Порецкого:

.

11. Связь импликации

с отрицанием – и дизъюнкцией
:

.

12. Связь эквивалентности ~ с дизъюнкцией

, конъюнкцией
и отрицанием:

~ y =
.

Всякая функция алгебры логики может быть реализована некоторой формулой языка с символами

~, –.

1.2 Дизъюнктивные и конъюнктивные нормальные формы (ДНФ и КНФ)

ДНФ и КНФ играют особую роль в алгебре логики и ее приложениях. Введем обозначение:

Так определенная переменная или ее отрицание называется первичным термом.

Формула вида

, где
- двоичный набор, а среди переменных нет одинаковых, называется элементарной конъюнкцией.

Всякая дизъюнкция элементарных конъюнкций называется дизъюнктивной нормальной формой (ДНФ):