Смекни!
smekni.com

Математическая модель системы слежения РЛС (стр. 9 из 15)

Таким образом, была смоделирована система управления, обеспечивающая более чем пятикратный выигрыш в быстродействии по сравнению с существующими системами, построенными на основе ПИД-регуляторов.




3 Практическая реализация

3.1 Реализация оптимального управления в среде пакета matlab

Для наглядного представления полученных в процессе работы алгоритма данных, все расчеты были выполнены в среде пакета MatLab. Была написана файл-функция Optimum_contr моделирующая работу блока оптимального управления и поведения системы в целом.

Структура программы имеет вид файл-функции, с несколькими подфункциями, описанными внутри данного файла. Такая организация позволяет запускать данную программу из командной строки интерпритатора MatLab.

Как было сказано выше, данная программа имеет ряд подпрограмм, описанных в основном файле.

Подпрограмма data_load() предназначена для загрузки начальных данных из файла.

Подпрограмма ident() производит вычисление параметров авторегрессионно-регрессионной модели с помощью метода МНК.

Для вычисления угловой скорости системы от угла существует подпрограмма calc_w(), которая вычисляет текущую скорость как разность текущего и предыдущего значений угла.

Подпрограмма upr() строит траекторию движения системы при заданном управлении в течении заданного количества шагов.

Подпрограмма u_calc() является основной частью системы. В ней производятся основные вычисления при выработке оптимального управления.

Подпрограмма znak() предназначена для определения начального знака управляющего параметра.

Подпрограмма countdot() определяет, в какую из областей пространства ошибок попадает фазовая точка системы в данный момент времени и вычисляет количество точек переключения управляющего параметра.

В подпрограмме dot_time() происходит вычисление моментов времени, в которые необходимо произвести переключение управляющего параметра.

В основном файле программы описаны и другие функции, рассматривать которые в рамках данной работы не имеет смысла, так как они являются вспомогательными и выполняют действия, необходимые для нормального функционирования системы.

3.2 Выбор микроконтроллера

Выбор типа контроллера обуславливается несколькими факторами, а именно: производительностью арифметическо-логического устройства, ёмкостью оперативного запоминающего устройства и постоянного запоминающего устройства, доступностью ПО для создания программ и отладки, а также доступностью на российском рынке.

При создании алгоритма изначально учитывалась его адаптация к применению в микроконтроллерах. Таким образом, был получен алгоритм, основанный лишь на элементарных арифметических операциях, которые не требуют разработки дополнительных библиотек для производимых вычислений. При адаптации к конкретной системе, для данного алгоритма необходимо провести предварительные вычисления — идентификацию установки — для загрузки полученных параметров в микроконтроллер.

В настоящее время большое распространение получила продукция фирм: INTEL, MICROCHIP и ATMEL. Большинство микроконтроллеров MICROCHIP и ATMEL имеют FLASH память программ, что позволяет достаточно просто выполнять отладку программного обеспечения, а также его обновление. Микроконтроллеры ATMEL семейства АТ89 совместимы с семейством MCS-51, которое в настоящее время получило широкое распространение. Для MCS-51 разработаны и доступны библиотеки и системы создания программ и отладки. Среди микроконтроллеров ATMEL семейства АТ89 имеется контроллер AT89S8252, который допускает программирование непосредственно в оборудовании, в котором используется, что особенно удобно на этапе разработки и отладки.

Контроллер AT89S8252 работает с тактовой частотой 24 МГц, что обеспечивает производительность порядка двух миллионов операции в секунду, имеет встроенные операции умножения и деления, 8 Кбайт ПЗУ программ и 256 байт ОЗУ данных. Анализ основных характеристик контроллера AT89S8252 показывает его пригодность для решения задачи, поставленной в данной работе.

4 Экономическое обоснование проекта

4.1 Технико-экономическая характеристика

Данный проект является научно-исследовательской разработкой (НИР) в области автоматизации деятельности предприятий и относится к информационным системам автоматизированного проектирования.

Целью проекта является создание программного продукта (ПП), основанного на математическом пакете MatLab, реализующего математическую модель системы управления, построенной на основе оптимального закона, для системы слежения РЛС.

Данный проект можно отнести к научно-исследовательской работе, которая принадлежит к типу прикладных, направленных на решение научных проблем с целью получения конкретных результатов, которые могут быть использованы в опытно-конструкторских разработках (ОКР). Постановка данной задачи на разработку соответствует требованиям соответствующим данному виду НИР. Характер проведения разработки ПО был таков, что на ряду с основными задачами решалась масса проблем, заключающихся в поиске оптимальных решений использования тех средств, которые предоставляли доступные программное, аппаратное обеспечения и математическая база.

4.2 Маркетинговая ориентация

На данном этапе разработки можно выбрать следующую маркетинговую ориентацию:

- преимущества у потребителя;

- с подкреплением;

- в реальном исполнении;

- по замыслу.

Ниже характеристики системы слежения РЛС с позиции маркетинга приведены в виде схемы на рисунке 4.1.

Преимущества у потребителя: Система осуществляет автоматический вывод объекта (ДПТ) на заданную траекторию за минимальное время, а также слежение и отработку с необходимой точностью задающего (наблюдаемого) воздействия.
С подкреплением: Узкоспециализированный ПП, используемый для синтеза закона управления объектом (ДПТ), а также моделирования поведения системы под действием полученного оптимального закона управления.
В реальном исполнении: Структурная схема системы управления с набором аналитических выражений для основных управляющих органов объекта (ДПТ).
По замыслу: Автоматический выход на заданные параметры работы объекта за минимальное время. Движение по заданной траектории с установленной точностью.
Рисунок 4.1 Маркетинговая ориентация

Пояснения к рисунку 4.1:

1) Основной целью создания ПП является автоматизация рабочего места научного сотрудника, а также поддержка принятия решений специалистов различного профиля. В ходе выполнения работы было проведено построение ММ информационной системы как задачи интеллектуальной системы автоматизированного проектирования и моделирования, были исследованы ее характеристики и вычислены некоторые параметры необходимые для практической реализации.

2) В реальном исполнении — это ПО информационной системы, функционально состоящее из структурной схемы системы управления с набором аналитических выражений для основных управляющих органов объекта (ДПТ). Система базируется на весьма распространенном в настоящее время классе ПЭВМ и имеет кросплатформенную реализацию.

3) Использование данного ПО носит специализированный характер: интерфейс пользователя обусловлен используемой программой интерпретатором (MatLab) и предназначен для освоения лицам, ранее работавшим с программой интерпретатором, но, возможно, не являющимися специалистами в области компьютерных технологий.

4) Основными достоинствами данного продукта являются гибкость, уникальность, оптимизация под требования конкретных задачи и заказчика. Система обладает относительно широкой аппаратной независимостью; некоторой программной (платформенной) независимостью (в пределах семейства Unix-подобных систем).

4.3 оценка научно-технической результативности и социальной эффективности НИР

Результатом НИР является достижение научного, научно-технического, экономического и социального эффекта.

Научный эффект характеризует получение новых научных знаний и отражает прирост информации, предназначенной для внутринаучного потребления. Научно-технический эффект характеризует возможность использования результатов выполняемых исследований в других НИР или ОКР и обеспечивает получение информации, необходимой для создания новой техники. Экономический эффект характеризуется выраженной в стоимостных показателях экономией живого и овеществленного труда в общественном производстве, полученной при использовании результатов прикладных НИР. Социальный эффект проявляется в улучшении условий труда, повышении экологических характеристик, развитии здравоохранения, культуры, науки, образования, и т.д.

Для итоговой оценки результатов НИР в зависимости от вида выполняемых исследований и поставленных целей в качестве критерия эффективности принимается один из видов эффекта, а остальные используются в качестве дополнительных характеристик.

Специфика проводимой работы не позволяет нам взять в качестве базового критерия — экономический или социальный эффект, поэтому имеет смысл остановиться на рассмотрении научного и научно-технического эффекта.

Количественную оценку научного эффекта целесообразно производить путем расчета научной результативности, научно-технического эффекта — научно-технической результативности.