Смекни!
smekni.com

Математическая статистика (стр. 2 из 2)

Модальный интервал определяется по наибольшей частоте. Рассмотрим нахождение моды на примере величины стажа работников на предприятии:

Стаж (лет) до 2 лет 2–4 4–6 6–8 8–10 более 10

Число работников: 4 2 20 35 11 7

Модальным интервалом в данном случае является интервал 6–8 лет, так как именно этот интервал соответствует самой многочисленной (35 человек) группе сотрудников:

М0=

.

Мода широко используется в статистической практике при изучении покупательского спроса, регистрации цен и т.д.

Медиана Ме – это вариант, который находится в середине вариационного ряда. Медиана делит ряд на две равные (по числу единиц) части – со значениями признака меньше медианы и со значениями признака больше медианы. Чтобы найти медиану, необходимо отыскать значение признака, которое находится в середине упорядоченного ряда.

В ранжированных рядах несгруппированных данных нахождение медианы сводится к отысканию порядкового номера медианы. Номер медианы для нечетного объема вычисляется по формуле:

где n – число членов ряда.

В случае четного объема ряда медиана равна средней из двух вариантов, находящихся в середине ряда.

В интервальных рядах распределения медианное значение оказывается в каком-то из интервалов признака x. Этот интервал характерен тем, что его кумулятивная частота (накопленная сумма частот) равна или превышает полусумму всех частот ряда. Значение медианы вычисляется линейной интерполяцией по формуле:

Медиана, как и мода, широко используется в маркетинговых исследованиях.

Для глубокого анализа изучаемого процесса, информации о средних уровнях исследуемых показателей обычно бывает недостаточно. Необходимо учитывать разброс или вариацию значений отдельных единиц, которая является важной характеристикой изучаемой совокупности.

Вариация – это многообразие, изменчивость значения признака у единиц совокупности. Она порождается комплексом условий, действующих на совокупность и ее единицы. Например, вариация оценок на экзамене в вузе порождается: различными способностями, временем подготовки, наличием или отсутствием мотивации.

В математической части решения этой задачи общая теория статистики опирается на математическую статистику, в которой излагается математическая сторона таких показателей вариации, как размах вариации, среднее линейное определение, дисперсия, среднее квадратическое отклонение, коэффициент вариации.

Все показатели вариации делятся на две группы: абсолютные и относительные.

К абсолютным показателям относятся: размах вариации, среднее линейное отклонение, дисперсия и среднее квадратическое отклонение.

Размах вариации (R) – вычисляется как разность между наибольшим и наименьшим значениями варьирующего признака

R=xmin-xmax.

Он показывает, насколько велико различие между единицами совокупности, имеющими самое маленькое и самое большое значение признака. Например, различие между минимальной и максимальной пенсиями.

Его особенности определяются, во-первых, зависимостью лишь от двух крайних значений признака, а во-вторых, он не учитывает частот в вариационном ряду распределения.

Показатель размаха вариации дает обобщающую характеристику только границам (амплитуде) значений признака, но не дает характеристики вариации распределению отклонений. Распределение отклонений можно уловить, вычислив отклонения всех вариант от средней. А для того, чтобы дать им обобщающую характеристику, необходимо далее вычислить среднюю из этих отклонений, то есть разности между значением признака и средней арифметической в данной совокупности единиц.

Из рассмотренных ранее свойств средней арифметической нам известно, что сумма отклонений значений признака от нее всегда равна нулю, так как сумма положительных отклонений всегда равна сумме отрицательных отклонений. Следовательно, чтобы вычислить среднюю арифметическую из отклонений, нужно условно допустить, что все отклонения, положительные и отрицательные, имеют одинаковый знак.

Далее возьмем сумму всех отклонений, условно принятых с одинаковым знаком, и разделим их на их число и полученный показатель вариации будет называться средним линейным отклонением (d), то есть это средняя арифметическая из абсолютных значений отклонений отдельных вариантов от их средней арифметической.

Если каждый вариант в ряду распределения повторяется один раз, то среднее линейное отклонение равно:

Для вариационного ряда с неравными частотами формула имеет следующий вид:


Среднее линейное отклонение обладает большим преимуществом перед размахом вариации в отношении полноты характеристики колеблемости признака. Однако при этом в некотором смысле нарушается элементарное правило математики, так как отклонение от среднего значения признака складывается без учета знаков. В некоторых случаях суммирование показателей без учета знаков имеет экономический смысл. Например, в практической статистике оборот внешней торговли страны определяется как сумма экспорта и импорта, общий оборот рабочей силы – как сумма принятых и уволенных и т.д.

Математическим ожиданием дискретной случайной величины Х называется сумма произведений ее всех возможных значений на соответствующие вероятности. Математическое ожидание (МО) обозначается через М(Х) или mх.

Отметим, что математическое ожидание случайной величины является величиной постоянной. Его часто называют средним (статистическим) значением случайной величины, а также центром распределения, т. к. около него группируются отдельные значения случайной величины.

Дисперсия – средний квадрат отклонения значений признака от их средней величины. Если каждый вариант повторяется один раз, то дисперсия равна:

Для вариационного ряда с неравными частотами формула примет вид:


или D(X) =

(по определению математического ожидания)

Квадратный корень из дисперсии носит название среднего квадратического отклонения от средней. Формулы его расчета следующие:

или

Элементарные алгебраические преобразования приводят формулу к виду:

.