Смекни!
smekni.com

Метод Гаусса для решения систем линейных уравнений (стр. 2 из 2)

Теперь обнулим коэффициент при

в третьей строке, домножив вторую строку на 6 и вычитая из неё третью:

В результате мы привели исходную систему к треугольному виду, тем самым закончив первый этап алгоритма.

На втором этапе разрешим полученные уравнения в обратном порядке. Имеем:

из третьего;

из второго, подставив полученное
;

из первого, подставив полученные
и
.

В случае, если число уравнений в совместной системе получилось меньше числа неизвестных, то тогда ответ будет записываться в виде фундаментальной системы решений.

Пример 2. Решить неопределенную СЛАУ 4-го порядка:

В результате элементарных преобразований над расширенной матрицей системы


исходная система свелась к ступенчатой, где количество уравнений меньше, чем количество неизвестных:

Поэтому общее решение системы: x2=5x4–13x3–3; x1=5x4–8x3–1. Если положить, например, что x3=0, x4=0, то найдем одно из частных решений этой системы x1=-1, x2=-3, x3=0, x4=0.

Пример 3. Решить СЛАУ 4-ого порядка.

Условие:

х1 – 2х2 – х3 + х4 = 1

х1 – 8х2 – 2х3 – 3х4 = -2

1 + 2х2 – х3 + 7х4 = 7

х1 + х2 + 2х3 + х4 = 1

Перепишем систему линейных алгебраических уравнений в матричную форму. Получится матрица 4х5, слева от разделительной линии стоят коэффициенты при переменных, а справа стоят свободные члены.

1 -2 -1 1 | 1

1 -8 -2 -3 | -2

2 2 -1 7 | 7

1 1 2 1 | 1

Проведём следующие действия:

a) из второй строки вычтем первую строку (cтрока 2 – строка 1);

b) из третьей строки вычтем первую строку, умноженную на 2 (cтрока 3–2 х строка 1)

c) из четвертой строки вычтем первую строку (cтрока 4 – строка 1). Получим:

1 -2 -1 1 | 1

0 -6 -1 -4 | -3

0 6 1 5 | 5

0 3 3 0 | 0

Проведём следующие действия:

a) к третьей строке прибавим вторую строку (строка 3 + строка 2);

b) четвертую строку поделим на 3 (строка 4 = строка 4 / 3). Получим:

1 -2 -1 1 | 1

0 -6 -1 -4 | -3

0 0 0 1 | 2

0 1 1 0 | 0

Проведём следующие действия:

a) четвертую строку поставим на место второй строки;

b) третью строку поставим на место четвертой строки;

c) вторую строку поставим на место третьей строки. Получим:

1 -2 -1 1 | 1

0 1 1 0 | 0

0 -6 -1 -4 | -3

0 0 0 1 | 2

К третьей строке прибавим вторую строку, умноженную на 6 (строка 3 + 6 × строка 2). Получим:

1 -2 -1 1 | 1

0 1 1 0 | 0

0 0 5 -4 | -3

0 0 0 1 | 2

Проведём следующие действия:

a) к третьей строке прибавим четвертую, умноженную на 4 (строка3 + 4×строка4);

b) из первой строки вычтем четвертую строку (строка 1 – строка 4);

c) третью строку поделим на 5 (строка 3 = строка 3 / 5). Получим:

1 -2 -1 1 | 1

0 1 1 0 | 0

0 0 1 0 | 1

0 0 0 1 | 2

Проведём следующие действия:

a) из второй строки вычтем третью строку (строка 2 – строка 3);

b) к первой строке прибавим третью строку (строка 1 + строка 3). Получим:

1 -2 0 0 | 0

0 1 0 0 | -1

0 0 1 0 | 1

0 0 0 1 | 2

c) К первой строке прибавим вторую строку, умноженную на 2 (строка 1 + 2 × строка 2). Получим:

1 0 0 0 | -2

0 1 0 0 | -1

0 0 1 0 | 1

0 0 0 1 | 2

В левой части матрицы по главной диагонали остались одни единицы. В правом столбце получаем решение:

х1 = -2

х2 = -1

х3 = 1

х4 = 2

3. Преимущества и недостатки метода Гаусса

Итак, метод Гаусса применим к любой системе линейных уравнений, он идеально подходит для решения систем, содержащих больше трех линейных уравнений. Метод Гаусса решения СЛАУ с числовыми коэффициентами в силу простоты и однотипности выполняемых операций пригоден для счета на электронно-вычислительных машинах.

Достоинства метода:

a) менее трудоёмкий по сравнению с другими методами;

b) позволяет однозначно установить, совместна система или нет, и если совместна, найти её решение;

c) позволяет найти максимальное число линейно независимых уравнений – ранг матрицы системы.

Существенным недостатком этого метода является невозможность сформулировать условия совместности и определенности системы в зависимости от значений коэффициентов и свободных членов. С другой стороны, даже в случае определенной системы этот метод не позволяет найти общие формулы, выражающие решение системы через ее коэффициенты и свободные члены, которые необходимо иметь при теоретических исследованиях.

Помимо аналитического решения СЛАУ, метод Гаусса также применяется для:

a) нахождения матрицы, обратной к данной (к матрице справа приписывается единичная такого же размера, что и исходная:

, после чего
приводится к виду единичной матрицы методом Гаусса–Жордана; в результате на месте изначальной единичной матрицы справа оказывается обратная к исходной матрица:
);

b) определения ранга матрицы (согласно следствию из теоремы Кронекера–Капелли ранг матрицы равен числу её главных переменных);

c) численного решения СЛАУ в вычислительной технике (ввиду погрешности вычислений используется Метод Гаусса с выделением главного элемента, суть которого заключена в том, чтобы на каждом шаге в качестве главной переменной выбирать ту, при которой среди оставшихся после вычёркивания очередных строк и столбцов стоит максимальный по модулю коэффициент).

Существуют и другие методы решения и исследования систем линейных уравнений, которые лишены отмеченных недостатков. Эти методы основаны на теории матриц и определителей.

Список источников

1. Кремер Н.Ш., Путко Б.А. Высшая математика для экономистов. - М.: Учеб. пособие, 1998.

2. Курош А.Г. Курс высшей алгебры. - М.: Учеб. пособие, 1968.

3. Справочник по математике для экономистов. Под ред. В.И. Ермакова // Инфра-М, Москва – 2009.