Теперь обнулим коэффициент при
в третьей строке, домножив вторую строку на 6 и вычитая из неё третью:В результате мы привели исходную систему к треугольному виду, тем самым закончив первый этап алгоритма.
На втором этапе разрешим полученные уравнения в обратном порядке. Имеем:
из третьего; из второго, подставив полученное ; из первого, подставив полученные и .В случае, если число уравнений в совместной системе получилось меньше числа неизвестных, то тогда ответ будет записываться в виде фундаментальной системы решений.
Пример 2. Решить неопределенную СЛАУ 4-го порядка:
В результате элементарных преобразований над расширенной матрицей системы
исходная система свелась к ступенчатой, где количество уравнений меньше, чем количество неизвестных:
Поэтому общее решение системы: x2=5x4–13x3–3; x1=5x4–8x3–1. Если положить, например, что x3=0, x4=0, то найдем одно из частных решений этой системы x1=-1, x2=-3, x3=0, x4=0.
Пример 3. Решить СЛАУ 4-ого порядка.
Условие:
х1 – 2х2 – х3 + х4 = 1
х1 – 8х2 – 2х3 – 3х4 = -2
2х1 + 2х2 – х3 + 7х4 = 7
х1 + х2 + 2х3 + х4 = 1
Перепишем систему линейных алгебраических уравнений в матричную форму. Получится матрица 4х5, слева от разделительной линии стоят коэффициенты при переменных, а справа стоят свободные члены.
1 -2 -1 1 | 1
1 -8 -2 -3 | -2
2 2 -1 7 | 7
1 1 2 1 | 1
Проведём следующие действия:
a) из второй строки вычтем первую строку (cтрока 2 – строка 1);
b) из третьей строки вычтем первую строку, умноженную на 2 (cтрока 3–2 х строка 1)
c) из четвертой строки вычтем первую строку (cтрока 4 – строка 1). Получим:
1 -2 -1 1 | 1
0 -6 -1 -4 | -3
0 6 1 5 | 5
0 3 3 0 | 0
Проведём следующие действия:
a) к третьей строке прибавим вторую строку (строка 3 + строка 2);
b) четвертую строку поделим на 3 (строка 4 = строка 4 / 3). Получим:
1 -2 -1 1 | 1
0 -6 -1 -4 | -3
0 0 0 1 | 2
0 1 1 0 | 0
Проведём следующие действия:
a) четвертую строку поставим на место второй строки;
b) третью строку поставим на место четвертой строки;
c) вторую строку поставим на место третьей строки. Получим:
1 -2 -1 1 | 1
0 1 1 0 | 0
0 -6 -1 -4 | -3
0 0 0 1 | 2
К третьей строке прибавим вторую строку, умноженную на 6 (строка 3 + 6 × строка 2). Получим:
1 -2 -1 1 | 1
0 1 1 0 | 0
0 0 5 -4 | -3
0 0 0 1 | 2
Проведём следующие действия:
a) к третьей строке прибавим четвертую, умноженную на 4 (строка3 + 4×строка4);
b) из первой строки вычтем четвертую строку (строка 1 – строка 4);
c) третью строку поделим на 5 (строка 3 = строка 3 / 5). Получим:
1 -2 -1 1 | 1
0 1 1 0 | 0
0 0 1 0 | 1
0 0 0 1 | 2
Проведём следующие действия:
a) из второй строки вычтем третью строку (строка 2 – строка 3);
b) к первой строке прибавим третью строку (строка 1 + строка 3). Получим:
1 -2 0 0 | 0
0 1 0 0 | -1
0 0 1 0 | 1
0 0 0 1 | 2
c) К первой строке прибавим вторую строку, умноженную на 2 (строка 1 + 2 × строка 2). Получим:
1 0 0 0 | -2
0 1 0 0 | -1
0 0 1 0 | 1
0 0 0 1 | 2
В левой части матрицы по главной диагонали остались одни единицы. В правом столбце получаем решение:
х1 = -2
х2 = -1
х3 = 1
х4 = 2
3. Преимущества и недостатки метода Гаусса
Итак, метод Гаусса применим к любой системе линейных уравнений, он идеально подходит для решения систем, содержащих больше трех линейных уравнений. Метод Гаусса решения СЛАУ с числовыми коэффициентами в силу простоты и однотипности выполняемых операций пригоден для счета на электронно-вычислительных машинах.
a) менее трудоёмкий по сравнению с другими методами;
b) позволяет однозначно установить, совместна система или нет, и если совместна, найти её решение;
c) позволяет найти максимальное число линейно независимых уравнений – ранг матрицы системы.
Существенным недостатком этого метода является невозможность сформулировать условия совместности и определенности системы в зависимости от значений коэффициентов и свободных членов. С другой стороны, даже в случае определенной системы этот метод не позволяет найти общие формулы, выражающие решение системы через ее коэффициенты и свободные члены, которые необходимо иметь при теоретических исследованиях.
Помимо аналитического решения СЛАУ, метод Гаусса также применяется для:
a) нахождения матрицы, обратной к данной (к матрице справа приписывается единичная такого же размера, что и исходная:
, после чего приводится к виду единичной матрицы методом Гаусса–Жордана; в результате на месте изначальной единичной матрицы справа оказывается обратная к исходной матрица: );b) определения ранга матрицы (согласно следствию из теоремы Кронекера–Капелли ранг матрицы равен числу её главных переменных);
c) численного решения СЛАУ в вычислительной технике (ввиду погрешности вычислений используется Метод Гаусса с выделением главного элемента, суть которого заключена в том, чтобы на каждом шаге в качестве главной переменной выбирать ту, при которой среди оставшихся после вычёркивания очередных строк и столбцов стоит максимальный по модулю коэффициент).
Существуют и другие методы решения и исследования систем линейных уравнений, которые лишены отмеченных недостатков. Эти методы основаны на теории матриц и определителей.
Список источников
1. Кремер Н.Ш., Путко Б.А. Высшая математика для экономистов. - М.: Учеб. пособие, 1998.
2. Курош А.Г. Курс высшей алгебры. - М.: Учеб. пособие, 1968.
3. Справочник по математике для экономистов. Под ред. В.И. Ермакова // Инфра-М, Москва – 2009.