Теорема 2.
(f(x))a = ( f(x)) a, где a = const, (6.7)т.е. можно переходить к пределу в основании степени при постоянном показателе, в частности,
; bf(x) =bA, где b = const, f(x)=A; (6.8) logc f(x) = logc f(x), где c = const. (6.9)Теорема 3.
= 1, = 1, a = const, a >0, = 1, (6.10) (1 + a)1/ a = e, (6.11)где e » 2.7 - основание натурального логарифма. Формулы (6.10) и (6.11) носят название первого и второго замечательного пределов.
Используются на практике и следствия формулы (6.11):
= logce, (6.12) (aa - 1)/a = ln a, (6.13) ((1 + a) m - 1)/a = m, (6.14)в частности,
= 1.Eсли x® a и при этом x > a, то пишут x® a+0. Если, в частности, a=0, то вместо символа 0+0 пишут +0. Аналогично если x®a и при этом x<a, то пишут x®a-0. Числа
и называются соответственно пределом справа и пределом слева функции f(x) в точке а. Для существования предела функции f(x) при x®a необходимо и достаточно, чтобы = .Функция f(x) называется непрерывной в точке x0, если
. (6.15)Условие (6.15) можно переписать в виде:
,то есть возможен предельный переход под знаком функции, если она непрерывна в данной точке.
Если равенство (6.15) нарушено, то говорят, что при x = xoфункция f(x) имеет разрыв. Рассмотрим функцию y = 1/x. Областью определения этой функции является множество R, кроме x = 0. Точка x = 0 является предельной точкой множества D(f), поскольку в любой ее окрестности, т.е. в любом открытом интервале, содержащем точку 0, есть точки из D(f), но она сама не принадлежит этому множеству. Значение f(xo)= f(0) не определено, поэтому в точке xo = 0 функция имеет разрыв.
Функция f(x) называется непрерывной справа в точке xo, если
,и непрерывной слева в точке xo, если
.Непрерывность функции в точке xo равносильна ее непрерывности в этой точке одновременно и справа и слева.
Для того, чтобы функция была непрерывна в точке xo, например, справа, необходимо, во-первых, чтобы существовал конечный предел
, а во-вторых, чтобы этот предел был равен f(xo). Следовательно, если хотя бы одно из этих двух условий не выполняется, то функция будет иметь разрыв.1. Если
существует и не равен f(xo), то говорят, что функция f(x) в точке xo имеет разрыв первого рода, или скачок.2. Если
равен ¥ или не существует, то говорят, что в точке xo функция имеет разрыв второго рода.Например, функция y = ctg x при x® +0 имеет предел, равный +¥, значит, в точке x=0 она имеет разрыв второго рода. Функция y = E(x) (целая часть от x) в точках с целыми абсциссами имеет разрывы первого рода, или скачки.
Функция, непрерывная в каждой точке промежутка [a,b], называется непрерывной в [a,b]. Непрерывная функция изображается сплошной кривой.
Ко второму замечательному пределу приводят многие задачи, связанные с непрерывным ростом какой-либо величины. К таким задачам, например, относятся: рост вклада по закону сложных процентов, рост населения страны, распад радиоактивного вещества, размножение бактерий и т.п.
Рассмотрим пример Я.И. Перельмана, дающий интерпретацию числа e в задаче о сложных процентах. Число e есть предел e =
. В сбербанках процентные деньги присоединяются к основному капиталу ежегодно. Если присоединение совершается чаще, то капитал растет быстрее, так как в образовании процентов участвует большая сумма. Возьмем чисто теоретический, весьма упрощенный пример. Пусть в банк положено 100 ден. ед. из расчета 100 % годовых. Если процентные деньги будут присоединены к основному капиталу лишь по истечении года, то к этому сроку 100 ден. ед. превратятся в 200 ден.ед. Посмотрим теперь, во что превратятся 100 ден. ед., если процентные деньги присоединять к основному капиталу каждые полгода. По истечении полугодия 100 ден. ед. вырастут в 100 × 1,5 = 150, а еще через полгода - в 150 × 1,5 = 225 (ден. ед.). Если присоединение делать каждые 1/3 года, то по истечении года 100 ден. ед. превратятся в 100 × (1 +1/3)3 »237 (ден. ед.). Будем учащать сроки присоединения процентных денег до 0,1 года, до 0,01 года, до 0,001 года и т.д. Тогда из 100 ден. ед. спустя год получится:100 × (1 +1/10)10 » 259 (ден. ед.),
100 × (1+1/100)100 » 270 (ден. ед.),
100 × (1+1/1000)1000 » 271 (ден. ед.).
При безграничном сокращении сроков присоединения процентов наращенный капитал не растет беспредельно, а приближается к некоторому пределу, равному приблизительно 271. Более чем в 2,71 раз капитал, положенный под 100% годовых, увеличиться не может, даже если бы наросшие проценты присоединялись к капиталу каждую секунду, потому что
= e.Пример 3.1. Пользуясь определением предела числовой последовательности, доказать, что последовательность xn =(n-1)/n имеет предел, равный 1.
Решение. Нам надо доказать, что, какое бы e>0 мы ни взяли, для него найдется натуральное число N, такое, что для всех n > N имеет место неравенство ½ xn -1 ½<e.
Возьмем любое e >0. Так как ½ xn -1 ½=½(n+1)/n - 1½= 1/n, то для отыскания N достаточно решить неравенство 1/n<e. Отсюда n>1/e и, следовательно, за N можно принять целую часть от 1/e, N = E(1/e). Мы тем самым доказали, что
xn = 1.Пример 3.2. Найти предел последовательности, заданной общим членом xn =
.Решение. Применим теорему о пределе суммы и найдем предел каждого слагаемого. При n ®¥ числитель и знаменатель каждого слагаемого стремится к бесконечности, и мы не можем непосредственно применить теорему о пределе частного. Поэтому сначала преобразуем xn, разделив числитель и знаменатель первого слагаемого на n2, а второго на n. Затем, применяя теорему о пределе частного и о пределе суммы, найдем:
xn =
.Пример 3.3. xn =
. Найти xn.Решение.
= .Здесь мы воспользовались теоремой о пределе степени: предел степени равен степени от предела основания.
Пример 3.4. Найти
( ).Решение. Применять теорему о пределе разности нельзя, поскольку имеем неопределенность вида ¥ - ¥. Преобразуем формулу общего члена:
= .Пример 3.5. Дана функция f(x)=21/x. Доказать, что
не существует.Решение. Воспользуемся определением 1 предела функции через последовательность. Возьмем последовательность { xn }, сходящуюся к 0, т.е.
xn =0. Покажем, что величина f(xn)= для разных последовательностей ведет себя по-разному. Пусть xn = 1/n. Очевидно, что 1/n =0, тогда = 2n = +¥. Выберем теперь в качестве xn последовательность с общим членом xn = -1/n, также стремящуюся к нулю. = 2- n= 1/2n = 0. Поэтому 2 1/x не существует.