Смекни!
smekni.com

Высшая математика для менеджеров (стр. 16 из 22)

На отрезке [a,b] функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка [a,b].

Пример 3.22. Найти экстремумы функции f(x) = 2x3 - 15x2+ 36x - 14.

Решение. Так как f ¢ (x) = 6x2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x1 = 2 и x2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x2 = 3 производная меняет знак минус на плюс, поэтому в точке x2 = 3 у функции минимум. Вычислив значения функции в точках x1 = 2 и x2 = 3, найдем экстремумы функции: максимум f(2) = 14 и минимум f(3) = 13.

Пример 3.23. Нужно построить прямоугольную площадку возле каменной стены так, чтобы с трех сторон она была отгорожена проволочной сеткой, а четвертой стороной примыкала к стене. Для этого имеется a погонных метров сетки. При каком соотношении сторон площадка будет иметь наибольшую площадь?

Решение. Обозначим стороны площадки через x и y. Площадь площадки равна S = xy. Пусть y - это длина стороны, примыкающей к стене. Тогда по условию должно выполняться равенство 2x + y = a. Поэтому y = a - 2x и S = x(a - 2x), где 0 £ x £ a/2 (длина и ширина площадки не могут быть отрицательными). S ¢ = a - 4x, a - 4x = 0 при x = a/4, откуда y = a - 2×a/4 =a/2. Поскольку x = a/4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При x < a/4 S ¢ >0, а при x >a/4 S ¢ <0, значит, в точке x=a/4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a2 /8 (кв. ед).

Поскольку S непрерывна на [0, a/2] и ее значения на концах S(0) и S(a/2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.

Пример 3.24. Требуется изготовить закрытый цилиндрический бак вместимостью V=16p » 50 м3. Каковы должны быть размеры бака (радиус R и высота Н), чтобы на его изготовление пошло наименьшее количество материала?

Решение. Площадь полной поверхности цилиндра равна S = 2pR(R+Н). Мы знаем объем цилиндра V = pR2Н Þ Н = V/pR2 =16p/ pR2 = 16/ R2. Значит, S(R) = 2p(R2+16/R). Находим производную этой функции: S ¢(R) = 2p(2R- 16/R2) = 4p (R- 8/R2). S ¢(R) = 0 при R3 = 8, следовательно, R = 2, Н = 16/4 = 4.

7.4 Раскрытие неопределенностей. Правило Лопиталя

1. Неопределенность вида 0/0. Первое правило Лопиталя.

Если

= 0, то
, когда последний существует.

2. Неопределенность вида ¥/¥. Второе правило Лопиталя.

Если

= ¥, то
, когда последний существует.

3. Неопределенности вида 0× ¥, ¥ - ¥, 1¥ и 00 сводятся к неопределенностям 0/0 и ¥/¥ путем алгебраических преобразований.

Пример 3.25. Найти предел функции y =

при x ® 0.

Решение. Имеем неопределенность вида ¥-¥. Сначала преобразуем ее к неопределенности вида 0/0, для чего достаточно привести дроби к общему знаменателю. К полученному выражению два раза применим правило Лопиталя. Записывая последовательно все промежуточные вычисления, будем иметь:

=
=
=
= =
=
.

Пример 3.26. Найти

.

Решение. Раскрывая неопределенность вида ¥/¥ по правилу Лопиталя, получаем:

=
=
=0.

Пример 3.27. Вычислить

.

Решение. Имеем неопределенность вида 1¥. Обозначим искомый предел через A. A =

.

Тогда ln A =

=
=
= 2, Þ A = e2.

7.5 Частные производные. Метод наименьших квадратов

Пусть D(x, y) - некоторое множество точек плоскости Oxy. Если каждой упорядоченной паре чисел (x, y) из области D соответствует определенное число z Î Z Ì R, то говорят, что z есть функция двух независимых переменных x и y. Переменные x и y называются независимыми переменными, или аргументами, D - областью определения, или существования, функции, а множество Z всех значений функции - областью ее значений. Функциональную зависимость z от x и y записывают в виде z = f(x, y), z = z(x, y), z = F(x, y) и т.д. Например, объем цилиндра V = pR2Н есть функция от радиуса R его основания и от высоты Н, т.е. V = f(R, Н), которая дает возможность, зная значения независимых переменных R и Н, установить соответствующее значение для V.

В экономических исследованиях часто используется производственная функция Кобба-Дугласа

, где z - величина общественного продукта, x - затраты труда, y - объем производственных фондов (обычно z и y измеряются в стоимостных единицах, x - в человеко-часах); A, a, b - постоянные. Функция Кобба-Дугласа является функцией двух независимых переменных: z = f(x, y). Частное значение функции z = f(x, y) при x = xo, y=yo обозначается zo= f(xo, yo). Геометрически область определения функции D представляет собой конечную или бесконечную часть плоскости, ограниченную линиями, которые могут принадлежать или не принадлежать этой области. В первом случае область D называется замкнутой и обозначается D, во втором случае - открытой. Наподобие того, как функция y = f(x) геометрически иллюстрируется своим графиком, можно геометрически истолковать и уравнение z = f(x, y). Возьмем в пространстве R3 прямоугольную систему координат и изобразим на плоскости Oxy область D. В каждой точке M(x, y)ÎD восстановим перпендикуляр к плоскости Oxy и отложим на нем значение z = f(x, y). Геометрическое место полученных таким образом точек и явится своего рода пространственным графиком нашей функции. Это будет, вообще говоря, некоторая поверхность, поэтому уравнение z = f(x, y) называется уравнением поверхности. Пара значений x и y определяет на плоскости Oxy точку M(x, y), а z = f(x, y) - аппликату соответствующей точки P(x, y, z) на поверхности. Поэтому говорят, что z есть функция точки M(x, y) и пишут z = f(M).

Функция f(M) имеет предел A,

, если разность f(M) - A есть бесконечно малая, когда r = MoM ® 0 при любом способе приближения M к Mo (например, по любой линии).

Функция f(x, y) называется непрерывной в точке Mo, если

.

В экономике рассматриваются функции не только от двух, но и большего числа независимых переменных. Например, уровень рентабельности R зависит от прибыли П на реализованную продукцию, величин основных (a) и оборотных (b) фондов, R = П/(a+b), т.е. R является функцией трех независимых переменных R = f(П, a, b). Областью определения функции трех переменных является множество точек пространства R3, но непосредственной геометрической интерпретации для функций с числом аргументов больше двух не существует, однако для них вводятся по аналогии все определения (частные производные, предел, непрерывность и т.д.), сформулированнные для f(x,y).

Аналогично определяется функция n независимых переменных z = f(x1, x2,..., xn).

Областью определения такой функции будет множество D Ì Rn. Примером функций многих переменных в экономике являются производственные функции. При рассмотрении любого производственного комплекса как открытой системы (входами которой служат затраты ресурсов - людских и материальных, а выходами - продукция) производственная функция выражает устойчивое количественное соотношение между входами и выходами. Производственная функция обычно задается уравнением z = f(x1, x2,..., xn), где все компоненты выпуска объединены (по стоимости или в натуре) в одну скалярную величину z, а разнородные производственные ресурсы обозначены как xi.

Частной производной функции нескольких переменных по одной из этих переменных называется производная, взятая по этой переменной при условии, что все остальные переменные остаются постоянными. Для функции двух переменных z = f(x, y) частной производной по переменной x называется производная этой функции по x при постоянном y. Обозначается частная производная по x следующим образом:

.