Решение. Вычислим коэффициенты нормальной системы уравнений:
.Следовательно, имеем систему
, решая которую, получим: a » 15,93; b » 110,57. Итак, получили уравнение искомой прямой: y = 15,93x + 110,57.8. Интегралы
8.1 Основные методы интегрирования
Функция F(x), дифференцируемая в данном промежутке X, называется первообразной для функции f(x), или интегралом от f(x), если для всякого x Î X справедливо равенство:
F¢ (x) = f(x). (8.1)
Нахождение всех первообразных для данной функции называется ее интегрированием. Неопределенным интегралом функции f(x) на данном промежутке Х называется множество всех первообразных функций для функции f(x); обозначение -
ò f(x) dx.
Если F(x) - какая-нибудь первобразная для функции f(x), то
ò f(x)dx = F(x) + C, (8.2)
где С - произвольная постоянная.
Непосредственно из определения получаем основные свойства неопределенного интеграла и список табличных интегралов:
1) d ò f(x)=f(x)dx,
2) ò df(x)=f(x)+C,
3) ò af(x)dx=aò f(x)dx (a=const),
4) ò(f(x)+g(x))dx= ò f(x)dx+ ò g(x)dx.
Список табличных интегралов
1. ò xm dx = xm+1/(m + 1) +C (m ¹ -1).
2.
= ln êx ê +C.3. ò ax dx = ax/ln a + C (a>0, a¹1).
4. ò ex dx = ex + C.
5. ò sin x dx = cos x + C.
6. ò cos x dx = - sin x + C.
7.
= arctg x + C.8.
= arcsin x + C.9.
= tg x + C.10.
= - ctg x + C.Для интегрирования многих функций применяют метод замены переменной, или подстановки, позволяющий приводить интегралы к табличной форме.
Если функция f(z) непрерывна на [a, b], функция z=g(x) имеет на [a,b] непрерывную производную и a £ g(x) £b, то
ò f(g(x)) g¢ (x) dx = ò f(z) dz, (8.3)
причем после интегрирования в правой части следует сделать подстановку z=g(x).
Для доказательства достаточно записать исходный интеграл в виде:
ò f(g(x)) g¢ (x) dx = ò f(g(x)) dg(x).
Например:
1)
;2)
.Пусть u = f(x) и v = g(x) - функции, имеющие непрерывные производные. Тогда, по правилу дифференцирования произведения,
d(uv)= udv + vdu или udv = d(uv) -vdu.
Для выражения d(uv) первообразной, очевидно, будет uv, поэтому имеет место формула:
ò udv = uv - ò vdu. (8.4)
Эта формула выражает правило интегрирования по частям. Оно приводит интегрирование выражения udv=uv'dx к интегрированию выражения vdu=vu'dx.
Пусть, например, требуется найти ò x cosx dx. Положим u = x, dv = cos x dx, так что du=dx, v=sinx. Тогда
ò x cos x dx = ò x d(sin x) = x sin x - ò sin x dx = x sin x + cos x + C.
Правило интегрирования по частям имеет более ограниченную область применения, чем замена переменной. Но есть целые классы интегралов, например,
ò xk lnmx dx, ò xk sin bx dx, ò xk cos bx dx, ò xk e ax dx
и другие, которые вычисляются именно с помощью интегрирования по частям.
Понятие определенного интеграла вводится следующим образом. Пусть на отрезке [a, b] определена функция f(x). Разобьем отрезок [a, b] на n частей точками a = x0 < x1 <...<xn = b. Из каждого интервала (xi-1, xi) возьмем произвольную точку xi и составим сумму
f(xi)D xi, где D xi = xi - xi-1. Сумма вида f(xi)D xi называется интегральной суммой, а ее предел при l = max D xi ®0, если он существует и конечен, называется определенным интегралом функции f(x) от a до b и обозначается: f(xi)D xi. (8.5)Функция f(x) в этом случае называется интегрируемой на отрезке [a, b], числа a и b носят название нижнего и верхнего предела интеграла.
Для определенного интеграла справедливы следующие свойства:
1)
;2)
;3)
- ;4)
, (k = const, kÎR);5)
;6)
;7)
f(x)(b-a) (xÎ[a,b]).Последнее свойство называется теоремой о среднем значении.
Пусть f(x) непрерывна на [a, b]. Тогда на этом отрезке существует неопределенный интеграл
ò f(x) dx = F(x) + C
и имеет место формула Ньютона-Лейбница, cвязывающая определенный интеграл с неопределенным:
F(b) - F(a). (8.6)Геометрическая интерпретация: определенный интеграл
представляет собой площадь криволинейной трапеции, ограниченной сверху кривой y= f(x), прямыми x = a и x = b и отрезком оси Ox.Интегралы с бесконечными пределами и интегралы от разрывных (неограниченных) функций называются несобственными. Несобственные интегралы I рода - это интегралы на бесконечном промежутке, определяемые следующим образом:
. (8.7)Если этот предел существует и конечен, то
называется сходящимся несобственным интегралом от f(x) на интервале [а,+¥), а функцию f(x) называют интегрируемой на бесконечном промежутке [а,+¥). В противном случае про интеграл говорят, что он не существует, или расходится.Аналогично определяются несобственные интегралы на интервалах (-¥, b] и (-¥, +¥):
.Определим понятие интеграла от неограниченной функции. Если f(x) непрерывна для всех значений x отрезка [a,b], кроме точки с, в которой f(x) имеет бесконечный разрыв, то несобственным интегралом II рода от f(x) в пределах от a до b называется сумма:
,если эти пределы существуют и конечны. Обозначение:
= . (8.8)Пример 3.30. Вычислить ò dx/(x+2).
Решение. Обозначим t=x+2, тогда dx=dt, ò dx/(x+2) = ò dt/t = lnïtï+C = = lnïx+2ï+C.
Пример 3.31. Найти ò tg x dx.
Решение. ò tg x dx = ò sin x/cos x dx = - ò d(cos x)/ cos x. Пусть t=cos x, тогда ò tg x dx = - ò dt/t = - lnïtï+C = - lnïcos xï+C.
Пример 3.32. Найти ò dx/sin x.
Решение.
Пример 3.33. Найти
.Решение.
=Пример 3.34. Найти ò arctg x dx.
Решение. Обозначим u=arctg x, dv=dx. Тогда du = dx/(x2+1), v=x, откуда ò arctg x dx = x arctg x - ò x dx/(x2+1) = x arctg x + 1/2 ln(x2+1) +C; так как ò x dx/(x2+1) = 1/2 ò d(x2+1)/(x2+1) = 1/2 ln(x2+1) +C.
Пример 3.35. Вычислить ò ln x dx.
Решение. Применяя формулу интегрирования по частям, получим: u=ln x, dv=dx, du= 1/x dx, v=x. Тогда ò ln x dx = x lnx - ò x 1/x dx = = x lnx - ò dx = x lnx - x + C.
Пример 3.36. Вычислить ò ex sin x dx.
Решение. Обозначим u = ex, dv = sin x dx, тогда du = ex dx, v=ò sin x dx= - cos x Þ ò ex sin x dx = - ex cos x + ò ex cos x dx. Интеграл ò ex cos x dx также интегрируем по частям: u = ex, dv = cos x dx Þ du=exdx, v=sin x. Имеем: ò ex cos x dx = ex sin x - ò ex sin x dx. Получили соотношение ò ex sin x dx = - ex cos x + ex sin x - ò ex sin x dx, откуда 2 ò ex sin x dx = - ex cos x + ex sin x + С.
Пример 3.37. Вычислить J = ò cos(ln x)dx/x.
Решение. Так как dx/x = d(ln x), то J= ò cos(ln x)d(ln x). Заменяя ln x через t, приходим к табличному интегралу J = ò cos t dt = sin t + C = sin(ln x) + C.