Смекни!
smekni.com

Вычисления по теории вероятностей (стр. 3 из 3)

Задача 8. По данным выборки найти:

а) точечные оценки математического ожидания и дисперсии;

б) с доверительной вероятностью р =1-

найти доверительные интервалы для математического ожидания и дисперсии.
α x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
0.01 3,85 8,87 21,26 6,72 0,29 15,48 7,48 0,33 0,34 1,37

Решение

а) Вычислим математическое ожидание и дисперсию. Промежуточные значения поместим в таблицу.

xi mi mixi mixi2
3,85 1 3,85 14,822
8,87 1 8,87 78,677
21,26 1 21,26 451,987
6,72 1 6,72 45,158
0,29 1 0,29 0,0840
15,48 1 15,48 239,630
7,48 1 7,48 55,950
0,33 1 0,33 0,109
0,34 1 0,34 0,115
1,37 1 1,37 1,877
∑65,99 10 65,99 888,409

Математическое ожидание:

m=

=

Дисперсия:

δ2=

=

б) с доверительной вероятностью р =1-

найти доверительные интервалы для математического ожидания и дисперсии, считая, что выборка получена из нормальной совокупности.

Определим из таблиц значение

, где
;

Доверительный интервал для математического ожидания имеет вид:

Подставив полученные значения, найдем доверительный интервал для математического ожидания:

0,271<M<12.927

Доверительный интервал для дисперсии имеет вид:

Доверительный интервал для дисперсии равен: 23,192<D<240,79.