Rn(x)= , a £ x £ x.
Многочлен Тейлора (4.1) обладает свойством, что в точке x = a все его производные до порядка n включительно совпадают с соответствующими производными функции f, т. е.
T (a)= f(k)(a), k = 0, 1, …, n.
В этом легко убедиться, дифференцируя Tn(x). Благодаря этому свойству многочлен Тейлора хорошо приближает функцию f в окрестности точки a. Погрешность приближения составляет
|f(x) – Tn(x)| = |Rn(x)|,
т. е. задавая некоторую точность e > 0, можно определить окрестность точки a и значение n из условия:
|Rn(x)| = < e. (4.2)Пример 4.1.
Найдем приближение функции y = sinx многочленом Тейлора в окрестности точки a = 0. Воспользуемся известным выражением для k-ой производной функции sinx:
(sinx)(k) = sin x + k (4.3)Применяя последовательно формулу (4.3), получим:
f(0) = sin0 = 0;
f '(0) = cos(0) = 1;
f"(0) = –sin0 = 0;
f(2k-1)(0) = sin (2k – 1) = (–1)k – 1 ;
f(2k)(0) = 0;
f(2k+1)(x) = (–1)kcosx .
Следовательно, многочлен Тейлора для функции y = sinx для n = 2k имеет вид:
sinx = x – + … + (–1)k – 1 + R2k(x),
R2k(x) = (–1)k .
Зададим e = 10 –4 и отрезок [– , ]. Определим n =2k из неравенства:
|R2k(x)| =
< < < e = 10-4. Таким образом, на отрезке – , функция y = sinx с точностью до e = 10-4 равна многочлену 5-ой степени:sinx = x – + = x – 0.1667x3 + 0.0083x5.
Пример 4.2.
Найдем приближение функции y = ex многочленом Тейлора на отрезке [0, 1] с точностью e = 10 –5.
Выберем a = ½, т. е в середине отрезка. При этом величина погрешности в левой части (4.2) принимает минимальное значение. Из математического анализа известно, что для k-ой производной от ex справедливо равенство:
(ex)(k) = ex.
Поэтому
(ea)(k) = ea = e1/2,
Следовательно, многочлен Тейлора для функции y = exимеет вид:
ex = e1/2 + e1/2(x – ½) +
(x – ½)2 + … + (x – ½)n+ Rn(x),При этом, учитывая, что xÎ [0, 1], получим оценку погрешности:
|Rn(x)| <
. (4.4)Составим таблицу погрешностей, вычисленных по формуле (4.4):
n | 2 | 3 | 4 | 5 | 6 |
Rn | 0.057 | 0.0071 | 0.00071 | 0.000059 | 0.0000043 |
Таким образом, следует взять n = 6.
4.3 Интерполяция функции многочленами Лагранжа
Рассмотрим другой подход к приближению функции многочленами. Пусть функция y = f(x) определена на отрезке [a, b] и известны значения этой функции в некоторой системе узлов xi Î [a, b], i = 0, 1, … , n. Например, эти значения получены в эксперименте при наблюдении некоторой величины в определенных точках или в определенные моменты времени x0, x1, … , xn. Обозначим эти значения следующим образом: yi = f(xi), i = 0, 1, … , n. Требуется найти такой многочлен P(x) степени m,
P(x) = a0 + a1x + a2x2 + … + amxm, (4.5)
который бы в узлах xi, i = 0, 1, … , n принимал те же значения, что и исходная функция y = f(x), т. е.
P(xi) = yi, i = 0, 1, … , n. (4.6)
Многочлен (4.5), удовлетворяющий условию (4.6), называется интерполяционным многочленом.
Другими словами, ставится задача построения функции y = P(x), график которой проходит через заданные точки (xi, yi), i = 0, 1, … , n (рис. 4.1).
Рис. 4.1
Объединяя (4.5) и (4.6), получим:
a0 + a1xi + a2x + … + amx = yi, i = 0, 1, … , n. (4.7)
В искомом многочлене P(x) неизвестными являются m +1 коэффициент a0 , a1, a2, …, am. Поэтому систему (4.7) можно рассматривать как систему из n +1 уравнений с m +1 неизвестными. Известно, что для существования единственного решения такой системы необходимо , чтобы выполнялось условие: m = n. Таким образом, систему (4.7) можно переписать в развернутом виде:
a0 + a1 x0 + a2x + … + anx = y0a0 + a1 x1 + a2x + … + anx = y1
a0 + a1 x2 + a2x + … + anx = y2 (4.8)
.
a0 + a1 xn + a2x + … + anx = yn
Вопрос о существовании и единственности интерполяционного многочлена решает следующая теорема:
Теорема 4.1. Существует единственный интерполяционный многочлен степени n, удовлетворяющий условиям (4.6).
Имеются различные формы записи интерполяционного многочлена. Широко распространенной формой записи является многочлен Лагранжа
Ln(x) =
= . (4.9)В частности, для линейной и квадратичной интерполяции по Лагранжу получим следующие интерполяционные многочлены:
L1(x) = y0
+ y1 ,L2(x) = y0 + y1 + y2 .
Пример 4.3.
Построим интерполяционный многочлен Лагранжа по следующим данным:
x | 0 | 2 | 3 | 5 |
y | 1 | 3 | 2 | 5 |
Степень многочлена Лагранжа для n +1 узла равна n. Для нашего примера многочлен Лагранжа имеет третью степень. В соответствии с (4.9)