L3(x) = 1
+3 + 2 + 5 = 1 + x – x2 + x3.Пример 4.4.
Рассмотрим пример использования интерполяционного многочлена Лагранжа для вычисления значения заданной функции в промежуточной точке. Эта задача возникает, например, когда заданы табличные значения функции с крупным шагом, а требуется составить таблицу значений с маленьким шагом.
Для функции y = sinx известны следующие данные.
x | 0 | p/6 | p/3 | p/2 |
y | 0 | ½ | 1 |
Вычислим y(0.25).
Найдем многочлен Лагранжа третьей степени:
L3(x) = 0
+ ++ 1 .
При x = 0.25 получим y(0.25) = sin 0.25 » 0.249.
Погрешность интерполяции. Пусть интерполяционный многочлен Лагранжа построен для известной функции f(x). Необходимо выяснить, насколько этот многочлен близок к функции в точках отрезка [a, b], отличных от узлов. Погрешность интерполяции равна |f(x) – Pn(x)|. Оценку погрешности можно получить на основании следующей теоремы.
Теорема 4.2. Пусть функция f(x) дифференцируема n +1 раз на отрезке [a, b], содержащем узлы интерполяции xi Î [a, b], i = 0, 1, … , n. Тогда для погрешности интерполяции в точке x Î [a, b] справедлива оценка:
|f(x) – Ln(x)|£
|wn+1(x)|, (4.10)где
Mn+1 =
|f(n+1)(x)|,wn+1(x) = (x – x0)(x – x1)…. (x – xn).
Для максимальной погрешности интерполяции на всем отрезке [a, b] справедлива оценка:
|f(x) – Ln(x)| £ |wn(x)| (4.11)Пример 4.5.
Оценим погрешность приближения функции f(x) = в точке x = 116 и на всем отрезке [a, b], где a = 100, b = 144, с помощью интерполяционного много члена Лагранжа L2(x) второй степени, построенного с узлами x0 = 100, x2 = 144.
Найдем первую, вторую и третью производные функции f(x):
f '(x)= x – 1/2, f "(x)= – x –3/2, f'''(x)= x –5/2.
M3 =
| f'''(x)| = 100 –5/2 = 10 –5.В соответствии с (4.9) получим оценку погрешности в точке x = 116:
|
– L2(116)| £ |(116 – 100)(116 – 121)(116 – 144)| = 10 –5×16×5×28 = 1.4×10 – 3.Оценим погрешность приближения функции f(x) = на всем отрезке в соответствии с (4.11):
| – L2(x)| £ |(x – 100)(x – 121)(x –144)| » 2.5×10–3.4.4 Аппроксимация функций. Метод наименьших квадратов
В инженерной деятельности часто возникает необходимость описать в виде функциональной зависимости связь между величинами, заданными таблично или в виде набора точек с координатами (xi, yi), i = 0, 1, 2,... , n, где n – общее количество точек. Как правило, эти табличные данные получены экспериментально и имеют погрешности (рис. 2.5)
Рис.4.2
При аппроксимации желательно получить относительно простую функциональную зависимость (например, многочлен), которая позволила бы "сгладить" экспериментальные погрешности, вычислять значения функции в точках, не содержащихся в исходной таблице.
Эта функциональная зависимость должна с достаточной точностью соответствовать исходной табличной зависимости. В качестве критерия точности чаще всего используют критерий наименьших квадратов, т.е. определяют такую функциональную зависимость f(x), при которой
S = , (4.12)
обращается в минимум.
Погрешность приближения оценивается величиной среднеквадратического уклонения
D =
. (4.13)В качестве функциональной зависимости рассмотрим многочлен
Pm(x)=a0 + a1x + a2x2+...+amxm. (4.14)
Формула (4.12) примет вид
S =
Условия минимума S можно записать, приравнивая нулю частные производные S по всем переменным a0, a1, a2, … , am. Получим систему уравнений
= – = 0, или = 0, k = 0, 1, … , m. (4.15)Систему уравнений (4.15) перепишем в следующем виде:
a0 + a1 + … +am =
, k = 0, 1, … , m (4.16)Введем обозначения:
ck =
, bk = .Система (4.16) может быть записана так:
a0ck + a1ck+1 + … + ck+mam = bk, k = 0, 1, … , m. (4.17)
Перепишем систему (4.17) в развернутом виде:
c0a0 + c1a1 + c2a2… + cmam = b0
c1a0 + c2a1 + c3a2… + cm+1am = b1
(4.18)
cma0 + cm+1a1 + cm+2a2… + c2mam = bm
Матричная запись системы (4.18) имеет следующий вид:
Ca = b. (4.19)
Для определения коэффициентов ak, k = 0, 1, … , m, и, следовательно, искомого многочлена (4.14) необходимо вычислить суммы ck, bk и решить систему уравнений (4.18). Матрица C системы (4.19) называется матрицей Грама и является симметричной и положительно определенной. Эти полезные свойства используются при решении.