15a0 + 55a1 = 53
По формулам (4.23) найдем коэффициенты a0 и a1:
a0 =
P1(x) = a0 + a1x = –2.7 + 1.7x.
2. Квадратичная аппроксимация (m =2).
Система уравнений для определения коэффициентов a0, a1 и a2 многочлена второй степени P2(x) = a0 + a1x + a2x2 имеет вид
15a0 + 55a1 + 225a2 = 53
55a0 + 225a1 + 979a2 = 235
По формулам (4.31) найдем коэффициенты a0, a1 и a2:
a0 » –2.20, a1 » 1.27, a2 » 0.07.
P2(x) = a0 + a1x + a2x2 = –2.20 + 1.27x + 0.07x2.
Сравним значения, рассчитанные для функциональной зависимости, с исходными данными. Результаты приведены в табл.2.4.
Таблица 4.2
i | 0 | 1 | 2 | 3 | 4 |
xi | 1 | 2 | 3 | 4 | 5 |
yi | –1 | 1 | 2 | 4 | 6 |
P1(xi) | –1 | 0.7 | 2.4 | 4.1 | 5.8 |
P2(xi) | –1 | 0.62 | 2.24 | 4 | 6.9 |
Погрешность приближения в соответствии с формулами (4.24) и (4.32) составит
D1 =
D2 =
Тема 5. Численное интегрирование функций одной переменной
5.1 Постановка задачи численного интегрирования
Далеко не все интегралы можно вычислить по известной из математического анализа формуле Ньютона – Лейбница:
I = = F(b) – F(a), (5.1)
где F(x) – первообразная функции f(x). Например, в элементарных функциях не выражается интеграл
Суть численного интегрирования заключается в том, что подынтегральную функцию f(x) заменяют другой приближенной функцией, так, чтобы, во-первых, она была близка к f(x) и, во вторых, интеграл от нее легко вычислялся. Например, можно заменить подынтегральную функцию интерполяционным многочленом. Широко используют квадратурные формулы:
»
где xi – некоторые точки на отрезке [a, b],называемые узлами квадратурной формулы, Ai– числовые коэффициенты, называемые весами квадратурной формулы, n ³ 0 – целое число.
5.2 Метод прямоугольников
Формулу прямоугольников можно получить из геометрической интерпретации интеграла. Будем интерпретировать интеграл как площадь криволинейной трапеции, ограниченной графиком функции y = f(x), осью абсцисс и прямыми x = a и x = b (рис. 5.1).
Рис. 5.1
Разобьем отрезок [a, b] на n равных частей длиной h, так, что h = . При этом получим точки a = x0 < x1< x2 < … < xn = b и xi+1 = xi + h, i = 0, 1, … , n – 1 (рис. 5.2)
Рис. 5.2
Заменим приближенно площадь криволинейной трапеции площадью ступенчатой фигуры, изображенной на рис. 5.3.
Рис. 5.3
Эта фигура состоит из n прямоугольников. Основание i-го прямоугольника образует отрезок [xi, xi+1] длины h, а высота основания равна значению функции в середине отрезка [xi, xi+1], т е. f (рис. 5.4).
Рис. 5.4
Тогда получим квадратурную формулу средних прямоугольников:
I = » Iпр =
Формулу (5.3) называют также формулой средних прямоугольников. Иногда используют формулы
I » I =
I » I =
которые называют соответственно квадратурными формулами левых и правых прямоугольников.
Геометрические иллюстрации этих формул приведены на рис. 5.5 и 5.6.
Рис. 5.5
Рис. 5. 6
Оценка погрешности. Для оценки погрешности формулы прямоугольников воспользуемся следующей теоремой .
Теорема 5.1. Пусть функция f дважды непрерывно дифференцируема на отрезке [a, b]. Тогда для формулы прямоугольников справедлива следующая оценка погрешности:
| I – Iпр | £
где M2 =
Пример 5.1.
Вычислим значение интеграла
Составим таблицу значений функции e (табл. 5.1):
Таблица 5.1
x | e | x | e |
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 | 1.0000000 0.9975031 0.9900498 0.9777512 0.9607894 0.9394131 0.9139312 0.8847059 0.8521438 0.8166865 0.7788008 | 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 | 0.7389685 0.6976763 0.6554063 0.6126264 0.5697828 0.5272924 0.4855369 0.4448581 0.4055545 0.3678794 |
Производя вычисления по формуле (5.3), получим:
Iпр = 0.74713088.
Оценим погрешность полученного значения. Имеем:
f "(x) = (e )" = (4x2 – 2) e
.
Нетрудно убедиться, что | f "(x)| £ M2 = 2. Поэтому по формуле(5.4)
| I – Iпр | £
5.3 Метод трапеций
Выведем формулу трапеций так же, как и формулу прямоугольников, из геометрических соображений. Заменим график функции y = f(x) (рис.5.1) ломаной линией (рис.5.7), полученной следующим образом. Из точек a = x0, x1, x2,…, xn = b проведем ординаты до пересечения с кривой y = f(x). Концы ординат соединим прямолинейными отрезками.