xn +1 = xn –
. (2.13)Формула (2.13) является расчетной формулой метода Ньютона.
Метод Ньютона можно рассматривать как частный случай метода простых итераций, для которого
j(x) = x -
. (2.14)Сходимость метода. Сходимость метода Ньютона устанавливает следующая теорема.
Теорема 2.3. Пусть x* – простой корень уравнения f(x) = 0, и в некоторой окрестности этого корня функция f дважды непрерывно дифференцируема. Тогда найдется такая малая s-окрестность корня x*, что при произвольном выборе начального приближения x0 из этой окрестности итерационная последовательность, определенная по формуле (2.13) не выходит за пределы этой окрестности и справедлива оценка:
|xn + 1 – x*| £ C |xn – x*|2, n 0, (2.15)
где С = s -1. Оценка (2.15) означает, что метод сходится с квадратичной скоростью.
Сходимость метода Ньютона зависит от того, насколько близко к корню выбрано начальное приближение. Неудачный выбор начального приближения может дать расходящуюся последовательность. Полезно иметь в виду следующее достаточное условие сходимости метода. Пусть [a, b] – отрезок, содержащий корень. Если в качестве начального приближения x0 выбрать тот из концов отрезка, для которого
f(x)f"(x) ³ 0, (2.16)
то итерации (2.13) сходятся, причем монотонно. Рис. 2.8 соответствует случаю, когда в качестве начального приближения был выбран правый конец отрезка: x0 = b.
Погрешность метода. Оценка (2.15) является априорной и неудобна для практического использования. На практике удобно пользоваться следующей апостериорной оценкой погрешности:
|xn – x*| £ |xn – xn – 1|. (2.17)
Критерий окончания. Оценка (2.17) позволяет сформулировать следующий критерий окончания итераций метода Ньютона. При заданной точности e > 0 вычисления нужно вести до тех пор, пока не будет выполнено неравенство
|xn – xn – 1| < e. (2.18)
Пример 2.3.
Применим метод Ньютона для вычисления
. где a > 0, p – натуральное число. Вычисление эквивалентно решению уравнения xp = a. Таким образом, нужно найти корень уравнения f(x) = 0, f(x) = xp– a, f '(x) = pxp – 1. Итерационная формула метода (2.13) примет вид:xn +1 = xn –
= xn + . (2.19)Используя формулу (2.19), найдем
с точностью e = 10-3.xn +1 =
xn + .Простой корень уравнения x3 – 7 = 0 расположен на отрезке [1, 2]. Действительно, на концах отрезка [1, 2] функция f(x) = x3 – 7 принимает разные знаки, f (1) < 0, f (2) > 0. Кроме того, при x = 2 выполнено достаточное условие сходимости (2.16): f (2)f" (2) ³ 0.
Поэтому в качестве начального приближения можно взять x0 = 2.
Результаты приведены в табл. 2.3.
Таблица 2.3
n | xn |
0 1 2 3 4 5 | 2 0.8415 0.8861 0.8742 0.8774 0.8765 |
2.6 Метод секущих (метод хорд)
В этом и следующем разделе рассмотрим модификации метода Ньютона.
Как видно из формулы (2.13), метод Ньютона требует для своей реализации вычисления производной, что ограничивает его применение. Метод секущих лишен этого недостатка. Если производную заменить ее приближением:
f '(xn) »
,то вместо формулы (2.13) получим
xn +1 = xn –.
. (2.20)Это означает, что касательные заменены секущими. Метод секущих является двухшаговым методом, для вычисления приближения xn +1 необходимо вычислить два предыдущих приближения xn и xn – 1 , и, в частности, на первой итерации надо знать два начальных значения x0 и x1.
Формула (2.20) является расчетной формулой метода секущих. На рис. 2.9 приведена геометрическая иллюстрация метода секущих.
Рис. 2.9
Очередное приближение xn +1 получается как точка пересечения с осью OX секущей, соединяющей точки графика функции f(x) с координатами (xn -1, f(xn - 1)) и (xn , f(xn)).
Сходимость метода. Сходимость метода секущих устанавливает следующая теорема.
Теорема 2.4 Пусть x* – простой корень уравнения f(x) = 0, и в некоторой окрестности этого корня функция f дважды непрерывно дифференцируема, причем f"(x) ¹ 0. Тогда найдется такая малая s-окрестность корня x*, что при произвольном выборе начальных приближений x0 и x1 из этой окрестности итерационная последовательность, определенная по формуле (2.20) сходится и справедлива оценка:
|xn + 1 – x*| £ C |xn – x*| p, n ³ 0, p =
» 1.618. (2.21)Сравнение оценок (2.15) и (2.21) показывает, что p < 2, и метод секущих сходится медленнее, чем метод Ньютона. Но в методе Ньютона на каждой итерации надо вычислять и функцию, и производную, а в методе секущих – только функцию. Поэтому при одинаковом объеме вычислений в методе секущих можно сделать примерно вдвое больше итераций и получить более высокую точность.
Так же, как и метод Ньютона, при неудачном выборе начальных приближений (вдали от корня) метод секущих может расходиться. Кроме того применение метода секущих осложняется из-за того, что в знаменатель расчетной формулы метода (2.20) входит разность значений функции. Вблизи корня эта разность мала, и метод теряет устойчивость.
Критерий окончания. Критерий окончания итераций метода секущих такой же, как и для метода Ньютона. При заданной точности e > 0 вычисления нужно вести до тех пор, пока не будет выполнено неравенство
|xn – xn – 1| < e. (2.22)
Пример 2.4.
Применим метод секущих для вычисления положительного корня уравнения 4(1 – x2) – ex = 0 с точностью e = 10-3.
Корень этого уравнения находится на отрезке [0, 1], так как f (0) = 3 > 0, а f (1) = –e < 0. Подсчитаем вторую производную функции: f "(x) = –8 – ex. Условие f(x)f " (x) ³ 0 выполняется для точки b = 1. В качестве начального приближения возьмем x0 = b = 1. В качестве второго начального значения возьмем x1 = 0.5. Проведем вычисления по расчетной формуле (2.20). Результаты приведены в табл. 2.4.
Таблица 2.4
n | xn |
0 1 2 3 4 5 | 1.0000 0.5000 0.6660 0.7093 0.7033 0.7034 |
2.7 Метод ложного положения
Рассмотрим еще одну модификацию метода Ньютона.
Пусть известно, что простой корень x* уравнения f(x) = 0 находится на отрезке [a, b] и на одном из концов отрезка выполняется условие f(x)f"(x) ³ 0. Возьмем эту точку в качестве начального приближения. Пусть для определенности это будет b. Положим x0 = a. Будем проводить из точки B = (b, f(b)) прямые через расположенные на графике функции точки Bn с координатами (xn, f(xn), n = 0, 1, … . Абсцисса точки пересечения такой прямой с осью OX есть очередное приближение xn+1.
Геометрическая иллюстрация метода приведена на рис. 2.10.
Рис. 2.10
Прямые на этом рисунке заменяют касательные в методе Ньютона (рис. 2.8). Эта замена основана на приближенном равенстве
f '(xn) »
. (2.23)Заменим в расчетной формуле Ньютона (2.13) производную f '(xn) правой частью приближенного равенства (2.23). В результате получим расчетную формулу метода ложного положения:
xn +1 = xn –.
. (2.24)