Вычитая из третьего и четвертого уравнений системы (3.14) второе уравнение, умноженное соответственно на m и m , приходим к системе:
2.0x1 + 1.0x2 – 0.1x3 + 1.0x4 = 2.7–1.15x2 + 1.015x3 + 5.05x4 = – 4.305 (3.15)
4.28478x3– 7.38261x4 = 20.23696
2.28522x3 – 2.81739x4 = 9.67305
3-ий шаг. Вычислим множитель:
m =
= = 0.53333.Вычитая из четвертого уравнения системы (3.15) третье, умноженное на m , приведем систему к треугольному виду:
2.0x1 + 1.0x2 – 0.1x3 + 1.0x4 = 2.7–1.15x2 + 1.015x3 + 5.05x4 = – 4.305 (3.16)
4.28478x3– 7.38261x4 = 20.23696
1.11998x4 = –1.11998
Обратный ход. Обратный ход полностью совпадает с обратным ходом примера 3.1. Решение системы имеет вид:
x1 = 1.000, x2 = 2.000, x3 = 3.000, x4 = – 1.000.
3.4 Вычисление определителя методом исключения Гаусса
Из курса линейной алгебры известно, что определитель треугольной матрицы равен произведению диагональных элементов. В результате метода исключений Гаусса система линейных уравнений (3.2) с квадратной матрицей A приводится к эквивалентной ей системе (3.8) с треугольной матрицей An. Поэтому
det A = (–1)s det An,
где s – число перестановок строк, (s = 0, если использовался метод Гаусса по схеме единственного деления).Таким образом,
det A = (–1)sa11 a a …a (3.17)
Итак, для вычисления определителя det A необходимо выполнить процедуру прямого хода в методе Гаусса для системы уравнений Ax = 0, затем найти произведение главных элементов, стоящих на диагонали треугольной матрицы и умножить это произведение на (–1)s, где s – число перестановок строк.
Пример 3.3.
Вычислим определитель det A =
2.0 1.0 0.1 1.00.4 0.5 4.0 8.5
0.3 1.0 1.0 5.2
1.0 0.2 2.5 1.0
Данный определитель совпадает с определителем системы, рассмотренной в примере 3.1. Он равен произведению диагональных элементов треугольной матрицы (3.13):
det A = 2.0 × 0.30 × 16.425 × 1.12 = 11.0376.
Если же обратиться к примеру 3.2, то, учитывая, что была одна перестановка строк, т.е. s = 1, получим:
det A = (–1) × 2.0 × (–1.15) × 4.28478 × 1.11998 = 11.0375.
3.5 Вычисление обратной матрицы методом исключения Гаусса
Обратной матрицей к матрице A называется матрица A-1, для которой выполнено соотношение:
A A-1 = E, (3.18)
где E – единичная матрица:
0 1 0 … 0
E = 0 0 1 … 0 . (3.19)
0 0 0 … 1
Квадратная матрица A называется невырожденной, если det A ¹ 0. Всякая невырожденная матрица имеет обратную матрицу.
Вычисление обратной матрицы можно свести к рассмотренной выше задаче решения системы уравнений.
Пусть A – квадратная невырожденная матрица порядка n:
a11 a12 a13 … a1na21 a22 a23 … a2n
A = a31 a32 a33 … a3n
an1 an2 an3 … ann
и A-1 – ее обратная матрица:
x11 x12 x13 … x1nx21 x22 x23 … x2n
A-1 = x31 x32 x33 … x3n
xn1xn2xn3 … xnn
Используя соотношения (3.18), (3. 19) и правило умножения матриц, получим систему из n2 уравнений с n2 переменными xij, i, j = 1, 2, …, n. Чтобы получить первый столбец матрицы E, нужно почленно умножить каждую строку матрицы A на первый столбец матрицы A-1 и приравнять полученное произведение соответствующему элементу первого столбца матрицы E. В результате получим систему уравнений:
a11x11 + a12 x21 + a13x31 + … + a1nxn1 = 1a21x11 + a22 x21 + a23x31 + … + a2nxn1 = 0
a31x11 + a32 x21 + a33x31 + … + a3nxn1 = 0 (3.20)
an1x11 + an2 x21 + an3x31 + … + annxn1 = 0
Аналогично, чтобы получить второй столбец матрицы E, нужно почленно умножить каждую строку матрицы A на второй столбец матрицы A-1 и приравнять полученное произведение соответствующему элементу второго столбца матрицы E. В результате получим систему уравнений:
a11x12 + a12 x22 + a13x32 + … + a1nxn2 = 0a21x12 + a22 x22 + a23x32 + … + a2nxn2 = 1
a31x12 + a32 x22 + a33x32 + … + a3nxn2 = 0 (3.21)
an1x12 + an2 x22 + an3x32 + … + annxn2 = 0
и т. д.
Всего таким образом получим n систем по n уравнений в каждой системе, причем все эти системы имеют одну и ту же матрицу A и отличаются только свободными членами. Приведение матрицы A к треугольной по формулам (3.7) делается при этом только один раз. Затем по последней из формул (3.7) преобразуются все правые части, и для каждой правой части делается обратный ход.
Пример 3.4.
Вычислим обратную матрицу A-1 для матрицы
A = 1.8 –3.8 0.7 –3.7
0.7 2.1 –2.6 –2.87.3 8.1 1.7 –4.9
1.9 –4.3 –4.3 –4.7
По формулам (3.7) за три шага прямого хода преобразуем матрицу A в треугольную матрицу
1.8 –3.8 0.7 –3.70 3.57778 –2.87222 –1.36111
0 0 17.73577 19.04992
0 0 0 5.40155
Далее, применим процедуру обратного хода четыре раза для столбцов свободных членов, преобразованных по формулам (3.7) из столбцов единичной матрицы:
1 0 0 0
0 1 0 0
0 , 0 , 1 , 0
0 0 0 1
Каждый раз будем получать столбцы матрицы A-1. Опустив промежуточные вычисления, приведем окончательный вид матрицы A-1:
–0.21121 –0.46003 0.16248 0.26956–0.03533 0.16873 0.01573 –0.08920
0.23030 0.04607 –0.00944 –0.19885 .–0.29316 –0.38837 0.06128 0.18513
3.6 Метод простой итерации Якоби
Метод Гаусса обладает довольно сложной вычислительной схемой. Кроме того, при вычислениях накапливается ошибка округления, что может привести к недостаточно точному результату. Рассмотрим метод простой итерации Якоби, свободный от этих недостатков, хотя требующий приведения исходной системы уравнений к специальному виду.
Для того, чтобы применить метод простой итерации, необходимо систему уравнений
Ax = b (3.22)
с квадратной невырожденной матрицей A привести к виду
x = Bx + c, (3.23)
где B – квадратная невырожденная матрица с элементами bij, i, j = 1, 2, …, n, x – вектор-столбец неизвестных xi, c – вектор-столбец с элементами ci, i = 1, 2, …, n.