Файл: FERMA-2mPF-for
© Н. М. Козий, 2007
Авторские права защищены свидетельствами Украины
№ 27312 и № 28607
ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА ДЛЯ ЧЕТНЫХ ПОКАЗАТЕЛЕЙ СТЕПЕНИ
Великая теорема Ферма формулируется следующим образом: диофантово уравнение(http://soluvel.okis.ru/evrika.html):
Аn+ Вn= Сn /1/
где n- целое положительное число, большее двух, не имеет решения в целых положительных числах.
Суть Великой теоремы Ферма не изменится, если уравнение /1/ запишем следующим образом:
Аn= Сn -Вn /2/
Пусть показатель степени n=2m. Тогда уравнение /2/ запишется следующим образом:
А2m= С2m –В2m/3/
Для доказательства великой теоремы Ферма используем алгебраическое доказательство теоремы Пифагора.
АЛГЕБРАИЧЕСКОЕ ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ ПИФАГОРА (Решение уравнения теоремы Пифагора в целых числах)
Теорема Пифагора формулируется следующим образом: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов:
С2 =А2 + В2, /4/
где: С – гипотенуза; А и В – катеты.
Существуют прямоугольные треугольники, у которых стороны А, В и С выражаются целыми числами. Такие числа называются пифагоровыми.
Рассматривая уравнение теоремы Пифагора как алгебраическое уравнение, докажем, что существует бесконечное количество прямоугольных треугольников, в которых их стороны выражаются целыми числами или, что одно и тоже, уравнение /4/ имеет бесконечное количество решений в целых числах.
Суть теоремы Пифагора не изменится, если уравнение /4/ запишем следующим образом:
А2 = С2 –В2 /5/
Для доказательства теоремы Пифагора методами элементарной алгебры используем два известные в математике метода решения алгебраических уравнений: метод решения параметрических уравнений и метод замены переменных.
Уравнение /5/ рассматриваем как параметрическое уравнение с параметром Aи переменными Bи С. Уравнение /5/ в соответствии с известной зависимостью для разности квадратов двух чисел запишем в виде:
А2=(C-B)∙(C+B) /6/
Используя метод замены переменных, обозначим:
C-B=M /7/
Из уравнения /7/ имеем:
C=B+M /8/
Из уравнений /6/, /7/ и /8/ имеем:
А2 =M∙ (B+M+B)=M∙(2B+M) = 2BM+M2 /9/
Из уравнения /9/ имеем:
А2- M2=2BM /10/
Отсюда: B = /11/
Из уравнений /8/ и /11/ имеем:
C=
/12/Таким образом: B = /13/
C
/14/Из уравнений /11/ и /12/ следует, что необходимым условием для того чтобы числа В и С были целыми, является делимость числа A2на число M, т. е. число M должно быть одним из сомножителей, входящих в состав сомножителей числа А или A2.
Числа А и M должны иметь одинаковую четность.
По формулам /13/ и /14/ определяются числа BиCкак переменные, зависящие от значения числа А как параметра и значения числа M.
Из изложенного следует: 1. Квадрат простого числа Aравен разности квадратов одной пары чисел BиC (приM=1). 2. Квадрат составного числа Aравен разности квадратов одной пары или нескольких пар чисел BиC. 3. Квадрат числа Amравен разности квадратов нескольких пар чисел. 4. Все числа A> 2 являются пифагоровыми.
Таким образом, существует бесконечное количество троек пифагоровых чисел А, В и С и, следовательно, бесконечное количество прямоугольных треугольников, у которых стороны А, В и С выражаются целыми числами.
ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА
Вариант 1
Уравнение /3/ с учетом уравнений /5/ и /6/ запишем следующим образом:
А2m= С2m –В2m =(Сm –Вm)∙(Сm +Вm) /15/
Тогда в соответствии с уравнениями /13/ и /14/ запишем:
Bm= /16/
Cm
/17/Из уравнений /16/ и /17/ следует, что необходимым условием для того чтобы числа В и С были целыми, является делимость числа A2mна число M, т. е. число M должно быть одним из сомножителей, входящих в состав сомножителей числа А или A2m.Следовательно, число A2m должно быть равно:
A2m = M· D, /18/
где D – целое число.
Тогда : Bm= /19/
А число Cmс учетом уравнения /8/ равно:
Cm = Bm + M=
/20/Тогда из уравнений /19/ и /20/ следует:
B= /21/
C
/22/Если допустить, что В – целое число, то из уравнения /22/ следует, что число С не может быть целым числом, так как сомножители в скобках в подкоренных выражениях в уравнениях /21/ и /22/ отличаются всего на 1.
ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА
Вариант 2
Выше в доказательстве теоремы Пифагора доказано, что все натуральные числа являются пифагоровыми. Следовательно, все натуральные числа распределяются на тройки пифагоровых чисел и, следовательно, все тройки пифагоровых чисел удовлетворяют уравнению /4/:
С2 =А2 + В2 /23/
Пифагоровы числа (А, В, С) могут быть истолкованы как длины сторон прямоугольного треугольника, а их квадраты могут быть истолкованы как площади квадратов, построенных на гипотенузе и катетах этого треугольника. Умножив приведенное уравнение на С, получим:
С3=А2∙ С+ В2· С /24/
Из уравнения /24/ следует, что объем куба раскладывается на два объема двух параллелепипедов. Поскольку очевидно, что в уравнении /23/ А<Cи В<C, то из уравнения/24/ следует:
С3>А3 + В3/25/
На всем множестве троек пифагоровых чисел ( а все натуральные числа образуют тройки пифагоровых чисел) при показателе степени n=3 не может быть ни одного решения уравнения /1/:
Аn+ Вn= Сn
Следовательно, на всем множестве натуральных чисел невозможно куб разложить на два куба.
Умножив уравнение /23/ на С2, получим:
С2∙С2 =А2·С2 + В2∙С2 /26/
Все члены этого уравнения представляют собой объемы параллелепипедов:
параллелепипед С2∙С2имеет в основании квадрат со стороной С и высоту С2;
параллелепипед А2∙С2имеет в основании квадрат со стороной А и высоту С2;
параллелепипед В2∙С2 имеет в основании квадрат со стороной В и высоту С2.
Следовательно, в соответствии с уравнением /26/ объем одного параллелепипеда разложился на сумму объемов двух параллелепипедов.
Поскольку, как показано выше, А<Cи В<C, то из уравнения/26/ следует:
С4>А4 + В4/27/
В общем случае уравнение /26/ можно записать следующим образом:
С2∙Сn-2=А2·Сn-2 + В2∙Сn-2 /28/
Сn=А2·Сn-2 + В2∙Сn-2 /29/
Следовательно, в соответствии с уравнениями /28/ и /29/ объем одного параллелепипеда разложился на сумму объемов двух параллелепипедов. Поскольку, как показано выше, А<Cи В<C, то из уравнения/29/ следует:
Сn>Аn+ Вn/30/
Таким образом, великая теорема Ферма не имеет решения в целых положительных числах при четных показателях степени.