2. Использование определения логарифма
Пример 1. Решить уравнения
a) log2(5 + 3log2(x - 3)) = 3, | c) log(x - 2)9 = 2, |
b) | d) log2x + 1(2x2 - 8x + 15) = 2. |
Решение. a) Логарифмом положительного числа b по основанию a (a > 0, a ≠ 1) называется степень, в которую нужно возвести число a, чтобы получить b. Таким образом, logab = c, b = ac и, следовательно,
5 + 3log2(x - 3) = 23
или
3log2(x - 3) = 8 - 5, log2(x - 3) = 1.
Опять используя определение, получим
x - 3 = 21, x = 5.
Проверка полученного корня является неотъемлемой частью решения этого уравнения:
log2(5 + 3log2(5 - 3)) = log2(5 + 3log22) = log2(5 + 3) = log28 = 3.
Получим истинное равенство 3 = 3 и, следовательно, x = 5 есть решение исходного уравнения.
b) Аналогично примеру a), получим уравнение
откуда следует линейное уравнение x - 3 = 3(x + 3) с решением x = -6. Сделаем проверку и убедимся, что x = -6 является корнем исходного уравнения.
c) Аналогично примеру a), получим уравнение
(x - 2)2 = 9.
Возведя в квадрат, получим квадратное уравнение x2 - 4x - 5 = 0 с решениями x1 = -1 и x2 = 5. После проверки остается лишь x = 5.
d) Используя определение логарифма, получим уравнение
(2x2 - 8x + 15) = (2x + 1)2
или, после элементарных преобразований,
x2 + 6x-7 = 0,
откуда x1 = -7 и x2 = 1. После проверки остается x = 1.
3. Использование свойств логарифма
Пример 3. Решить уравнения
a) log3x + log3(x + 3) = log3(x + 24), |
b) log4(x2 - 4x + 1) - log4(x2 - 6x + 5) = -1/2 |
c) log2x + log3x = 1 |
Решение. a) ОДЗ уравнения есть множество x (0;+) которое определяется из системы неравенств (условия существования логарифмов уравнения)
x > 0, | |
x+3 > 0, | |
x+24 > 0. |
Используя свойство P2 и утверждение 1, получим
log3x + log3(x + 3) = log3(x + 24) | ||
log3x(x + 3) = log3(x + 24), | ||
x > 0, | | |
| x(x + 3) = x + 24, | |
x > 0, | ||
| x2 + 2x - 24 = 0, | |
x > 0, | ||
| x1 = -6, | |
x2 = 4, | ||
x > 0, | x = 4. |
b) Используя свойство P3, получим следствие исходного уравнения
откуда, используя определение логарифма, получим
или
x2 - 4x + 1 = 1/2(x2 - 6x + 5),
откуда получаем уравнение
x2 - 2x - 3 = 0
с решениями x1 = -1 и x = 3. После проверки остается лишь x = -1.
c) ОДЗ уравнения: x (0;+). Используя свойство P5, получим уравнение
log2x(1 + log32) = 1,
откуда
или или log2x = log63. Следовательно,Логарифмические неравенства
Неравенство, содержащее неизвестное под знаком логарифма или в его основании называется логарифмическим неравенством. В процессе решения логарифмических неравенств часто используются следующие утверждения относительно равносильности неравенств и учитываются свойства монотонности логарифмической функции.
Утверждение 1. Если a > 1, то неравенство logaf(x) > logag(x) равносильно системе неравенств
f(x) > g(x), | |
g(x) > 0. |
Утверждение 2. Если 0 < a < 1, то неравенство logaf(x) > logag(x) равносильно системе неравенств
f(x) < g(x), | |
f(x) > 0. |
Утверждение 3. Неравенство logh(x)f(x) > logh(x)g(x) равносильно совокупности систем неравенств
h(x) > 1, | ||
f(x) > g(x) > 0, | ||
0 < h(x) < 1, | ||
0 < f(x) < g(x). |
Подчеркнем, что в неравенстве logaf(x) > logag(x) вместо знака > может фигурировать любой из знаков ≥ , < , ≤ . В этом случае утверждения 1-3 соответственно преобразуются.
Пример 1. Решить неравенства
a) log3(x2 - x) ≥ log3(x + 8); |
b) |
c) |
Решение. a) Используя утверждение 1 , получим
log3(x2 - x) ≥ log3(x + 8) | x2 - x ≥ x + 8, | x2 - 2x - 8 ≥ 0, | |
x+8 > 0, | x > -8, |
x ≤ -2, | ||
x ≥ 4, | x (-8;-2] [4;+∞). | |
x > -8, |
b) Основание логарифма число между нулем и единицей, поэтому, используя утверждение 2, получим
c) Запишем 0 = log21 и, используя утверждение 1, получим
Запишем
и, используя утверждение 2, получимПоказательными называются неравенства, в которых неизвестное содержится в показателе степени.