Введение
Логарифмы были придуманы для ускорения и упрощения вычислений. Идея логарифма, т. е. идея выражать числа в виде степени одного и того же основания, принадлежит Михаилу Штифелю. Но во времена Штифеля математика была не столь развита и идея логарифма не нашла своего развития. Логарифмы были изобретены позже одновременно и независимо друг от друга шотландским учёным Джоном Непером(1550-1617) и швейцарцем Иобстом Бюрги(1552-1632) Первым опубликовал работу Непер в 1614г. под названием «Описание удивительной таблицы логарифмов», теория логарифмов Непера была дана в достаточно полном объёме, способ вычисления логарифмов дан наиболее простой, поэтому заслуги Непера в изобретении логарифмов больше, чем у Бюрги. Бюрги работал над таблицами одновременно с Непером, но долгое время держал их в секрете и опубликовал лишь в 1620г. Идеей логарифма Непер овладел около1594г. хотя таблицы опубликовал через 20 лет. Вначале он называл свои логарифмы «искусственными числами» и уже потом предложил эти «искусственные числа» называть одним словом «логарифм», который в переводе с греческого- «соотнесённые числа», взятые одно из арифметической прогресси, а другое из специально подобранной к ней геометрической прогресси. Первые таблицы на русском языке были изданы в1703г. при участии замечательного педагога 18в. Л. Ф Магницкого. В развитии теории логарифмов большое значение имели работы петербургского академика Леонарда Эйлера. Он первым стал рассматривать логарифмирование как действие, обратное возведению в степень, он ввёл в употребление термины «основание логарифма» и «мантисса» Бригс составил таблицы логарифмов с основанием 10. Десятичные таблицы более удобны для практического употребления, теория их проще, чем у логарифмов Непера. Поэтому десятичные логарифмы иногда называют бригсовыми. Термин «характеристика» ввёл Бригс.
В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.
Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: "Смотри!", "Делай так!", "Ты правильно нашел". В этом смысле исключением является "Арифметика" греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений.
Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово "аль-джебр" из арабского названия этого трактата – "Китаб аль-джебер валь-мукабала" ("Книга о восстановлении и противопоставлении") – со временем превратилось в хорошо знакомое всем слово "алгебра", а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.
Логарифмические уравнения и неравенства
1. Логарифмические уравнения
Уравнение, содержащее неизвестное под знаком логарифма или в его основании, называется логарифмическим уравнением.
Простейшим логарифмическим уравнением является уравнение вида
logax = b. (1)
Утверждение 1. Если a > 0, a ≠ 1, уравнение (1) при любом действительном b имеет единственное решение x = ab.
Пример 1. Решить уравнения:
a) log2x = 3, b) log3x = -1, c)
Решение. Используя утверждение 1, получим a) x = 23 или x = 8; b) x = 3-1 или x = 1/3; c)
или x = 1.Приведем основные свойства логарифма.
Р1. Основное логарифмическое тождество:
где a > 0, a ≠ 1 и b > 0.
Р2. Логарифм произведения положительных сомножителей равен сумме логарифмов этих сомножителей:
logaN1·N2 = logaN1 + logaN2 (a > 0, a ≠ 1, N1 > 0, N2 > 0).
Замечание. Если N1·N2 > 0, тогда свойство P2 примет вид
logaN1·N2 = loga |N1| + loga |N2| (a > 0, a ≠ 1, N1·N2 > 0).
Р3. Логарифм частного двух положительных чисел равен разности логарифмов делимого и делителя
(a > 0, a ≠ 1, N1 > 0, N2 > 0).Замечание. Если
, (что равносильно N1N2 > 0) тогда свойство P3 примет вид (a > 0, a ≠ 1, N1N2 > 0).P4. Логарифм степени положительного числа равен произведению показателя степени на логарифм этого числа:
logaNk = k logaN (a > 0, a ≠ 1, N > 0).
Замечание. Если k - четное число (k = 2s), то
logaN 2s = 2s loga |N| (a > 0, a ≠ 1, N ≠ 0).
P5. Формула перехода к другому основанию:
(a > 0, a ≠ 1, b > 0, b ≠ 1, N > 0),в частности, если N = b, получим
(a > 0, a ≠ 1, b > 0, b ≠ 1). (2)Используя свойства P4 и P5, легко получить следующие свойства
(a > 0, a ≠ 1, b > 0, c ≠ 0), (3) (a > 0, a ≠ 1, b > 0, c ≠ 0), (4) (a > 0, a ≠ 1, b > 0, c ≠ 0), (5)и, если в (5) c - четное число (c = 2n), имеет место
(b > 0, a ≠ 0, |a| ≠ 1). (6)Перечислим и основные свойства логарифмической функции f(x) = logax:
1. Область определения логарифмической функции есть множество положительных чисел.
2. Область значений логарифмической функции - множество действительных чисел.
3. При a > 1 логарифмическая функция строго возрастает (0 < x1 < x2 logax1 < logax2), а при 0 < a < 1, - строго убывает (0 < x1 < x2 logax1 > logax2).
4. loga 1 = 0 и logaa = 1 (a > 0, a ≠ 1).
5. Если a > 1, то логарифмическая функция отрицательна при x (0;1) и положительна при x (1;+∞), а если 0 < a < 1, то логарифмическая функция положительна при x (0;1) и отрицательна при x (1;+∞).
6. Если a > 1, то логарифмическая функция выпукла вверх, а если a (0;1) - выпукла вниз.
Следующие утверждения (см., например, [1]) используются при решении логарифмических уравнений.
Утверждение 2. Уравнение logaf(x) = logag(x) (a > 0, a ≠ 1) равносильно одной из систем (очевидно, выбирается та система, неравенство которой решается проще)
f(x) = g(x), | f(x) = g(x), | ||
f(x) > 0, | g(x) > 0. |
Утверждение 3. Уравнение logh(x)f(x) = logh(x)g(x) равносильно одной из систем
f(x) = g(x), | f(x) = g(x), | ||
h(x) > 0, | h(x) > 0, | ||
h(x) ≠ 1, | h(x) ≠ 1, | ||
f(x) > 0, | g(x) > 0. |
Нужно подчеркнуть, что в процессе решения логарифмических уравнений часто используются преобразования, которые изменяют область допустимых значений (ОДЗ) исходного уравнения. Следовательно, могут появиться "чужие" решения или могут быть потеряны решения. Например, уравнения
f(x) = g(x) иlogaf(x) = logag(x)
или
loga [f(x)·g(x)] = bиlogaf(x) + logag(x) = b
вообще говоря, неравносильны (ОДЗ уравнений справа уже).
Следовательно, при решении логарифмических уравнений полезно использовать равносильные преобразования. В противном случае, проверка полученных решений является составной частью решения. Более того, необходимо учитывать и преобразования, которые могут привести к потере корней.