Матрицы одинаковой размерности называются равными, если у них соответственно равны элементы, стоящие на одинаковых местах.
Матрица называется нулевой, если все ее элементы равны 0.
Квадратная матрица называется единичной, если элементы, стоящие на ее главной диагонали, равны 1, а остальные равны 0.
Линейные операции над матрицами.
1. Сложение матриц.
Суммой матриц А и В одинаковой размерности m
Свойства сложения:
1. А + В = В + А.
2. (А + В) + С = А + (В + С) .
3. Если О – нулевая матрица, то А + О = О + А = А
Замечание 1. Справедливость этих свойств следует из определения операции сложения матриц.
Замечание 2. Отметим еще раз, что складывать можно только матрицы одинаковой размерности.
Пример.
2. Умножение матрицы на число.
Произведением матрицы на число называется матрица той же размерности, что и исходная, все элементы которой равны элементам исходной матрицы, умноженным на данное число.
Свойства умножения матрицы на число:
1. (km)A=k(mA).
2. k(A + B) = kA + kB.
3. (k + m)A = kA + mA.
Замечание 1. Справедливость свойств следует из определений 3.4 и 3.5.
Замечание 2. Назовем разностью матриц А и В матрицу С, для которой С + В =А, т.е. С = А + (-1)В.
Пример.
Перемножение матриц.
Выше было указано, что сложение матриц накладывает условия на размерности слагаемых. Умножение матрицы на матрицу тоже требует выполнения определенных условий для размерностей сомножителей, а именно: число столбцов первого множителя должно равняться числу строк второго.
Произведением матрицы А размерности m
Пример.
Итак,
Обратная матрица.
Квадратная матрица А называется вырожденной, если
Квадратная матрица В называется обратной к квадратной матрице А того же порядка, если АВ = ВА = Е. При этом В обозначается
Cпособ вычисления обратной матрицы: ее элементами являются алгебраические дополнения к элементам транспонированной матрицы А, деленные на ее определитель.
Линейными операциями над какими-либо объектами называются их сложение и умножение на число.
Линейной комбинацией переменных называется результат применения к ним линейных операций, т.е.
Линейным уравнением называется уравнение вида
где
Таким образом, в левой части линейного уравнения стоит линейная комбинация неизвестных, а в правой – число.
Линейное уравнение называется однородным, если b = 0. В противном случае уравнение называется неоднородным.
Системой линейных уравнений (линейной системой) называется система вида
где
Решением линейной системы (2) называется набор чисел
Метод Гаусса решения линейных систем.
Замечание. Линейная система может иметь единственное решение, бесконечно много решений или не иметь ни одного решения.
Способы нахождения единственного решения системы,
в которой число уравнений равно числу неизвестных:
Пусть
Если новые коэффициенты при х2 не все равны нулю, можно таким же образом исключить
Здесь символами
Из последнего уравнения системы единственным образом определяется
Замечание. Иногда в результате преобразований в каком-либо из уравнений обращаются в 0 все коэффициенты и правая часть, то есть оно превращается в тождество 0=0. Исключив его из системы, мы уменьшим число уравнений по сравнению с числом неизвестных. Такая система не может иметь единственного решения.
Если же в процессе применения метода Гаусса какое-нибудь уравнение превратится в равенство вида 0=1 (коэффициенты при неизвестных обратились в 0, а правая часть приняла ненулевое значение), то исходная система не имеет решения, так как подобное равенство является неверным при любых значениях неизвестных.