Частным случаем операции умножения является возведение в степень:
формула Муавра.Используя полученные соотношения, перечислим основные свойства комплексно сопряженных чисел:
Извлечение корня из комплексного числа.
Комплексное число
называется корнем n-й степени из z, если z = z1n.Пример. Число z = 16 можно представить в тригонометрической форме следующим образом: z = 16(cos0 + isin0). Найдем все значения
:Показательная форма комплексного числа.
Введем еще одну форму записи комплексного числа. На множестве комплексных чисел существует связь между тригонометрическими и показательными функциями, задаваемая формулой Эйлера:
, Используя эту формулу, можно получить из еще один вид комплексного числа: который называется показательной формой записи комплексного числа.Рассмотрим в комплексной области многочлен, то есть функцию вида
, где - комплексные числа. Числа называются коэффициентами многочлена, а натуральное число n – его степенью.Два многочлена Pn (z) и
равны тогда и только тогда, когда m=n, a0 = b0 , a1 = b1 ,…, an = bn .Число z0 называется корнем многочлена , если Pn (z0) = 0.
Теорема (теорема Безу). Остаток от деления многочлена Pn(z) на z – z0 ( z0 – не обязательно корень многочлена) равен P(z0).
Теорема (основная теорема алгебры). Всякий многочлен в комплексной области имеет корень .
Вопросы для самопроверки
1.Что такое мнимая единица?
2. Что такое вещественная и мнимая части комплексного числа? Являются ли они вещественными числами?
3. Что такое комплексно сопряженные числа? Чем отличаются изображения комплексно сопряженных чисел zи z* на комплексной плоскости?
4. Как изобразить на комплексной плоскости, пользуясь правилами сложения векторов, сумму и разность двух комплексных чисел7
5. Чему равно произведение комплексно сопряженных чисел?
6. Сколько решений имеет квадратное уравнение с вещественными коэффициентами? какие характерные случаи возможны?
7. В каком виде может быть представлен многочлен. если известны его корни?
ТЕМА 6. ПРЕДЕЛ И НЕПРЕРЫВНОСТЬ ФУНКЦИЙ
Понятие предела. предел суммы, произведения и частного. Предел сложной функции. Вычисление пределов. Замечательные пределы. Понятие непрерывности в точке и на интервале. Точки разрыва. Геометрический смысл. Непрерывность суммы , произведения и частного функций. непрерывность сложной функции. Непрерывность элементарных функций.
КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ
Число A называется пределом функции y = f(x) в точке x0 (иногда говорят, при x, стремящемся к x0), если для любого положительного числа e можно найти такое положительное число d, что для всех x из d-окрестности точки x0 соответствующие значения y попадают в e-окрестность точки y = A.
Можно сформулировать определение предела функции по-другому. Число A называется пределом функции y = f(x) в точке x0, если для любого положительного числа e можно найти такое положительное число d, что для всех x, удовлетворяющих условию
0 < êx – x0ê < d,
выполняется условие
êy – Aê < e.
Тот факт, что A есть предел функции y = f(x) в точке x = x0, записывается формулой
.Функция y = f(x) называется непрерывной в точке x = x0, если она определена в этой точке и ее значение f(x0) равно пределу функции в этой точке:
.Функция y = x2 непрерывна в точке x = 2, как и во всех точках числовой оси. Функция
не является непрерывной в точке x = 2. Функция не является непрерывной в точке x = 0. Функция, непрерывная в каждой точке открытого промежутка, называется непрерывной на этом промежутке.Cвойства предела функции.
1. Функция не может иметь в одной точке два разных предела.
2.
, если C — постоянная функция.3. Если существует
и C — постоянная функция, то .4. Если существуют
и , то существует , равный , а также существует , равный . Если при этом , то существует , равный .Число B называется пределом функции f(x) в точке a справа (это записывается в виде формулы
), если для любого положительного числа e найдется положительное число d, такое что из из условия 0 < x – a < d будет следовать êB –f(x) ê < e.Согласно приведенному определению
.Число С называется пределом функции f(x) в точке b слева (это записывается в виде формулы
), если для любого положительного числа e найдется положительное число d такое, что из условия 0 < b – x < d будет следовать êC – f(x)ê < e.Функция f(x) называется непрерывной в точке a справа (непрерывной в точке b слева), если
( ).Функция
непрерывна справа в точке x=0.Функция называется непрерывной на замкнутом промежутке [a, b], если она непрерывна на открытом промежутке (a, b), непрерывна справа в точке a и непрерывна слева в точке b.
Для того, чтобы выполнялось равенство
, необходимо и достаточно, чтобы одновременно выполнялись два равенства: ;Число А называется пределом функции f(x) при х, стремящемся к бесконечности:
,если для любого положительного числа e можно найти такое положительное число M (зависящее от e), что для всех чисел х, превосходящих М, выполняется условие:
½f(x) – A½ < e.
Пусть теперь функция f(x) определена на полу бесконечном промежутке
(–¥; х0). Число А называется пределом функции f(x) при х, стремящемся к минус бесконечности:
если для любого положительного числа e можно найти такое положительное число M (зависящее от e), что для всех чисел х, меньших, чем – М, выполняется условие:
½f(x) – A½ < e.
Два, так называемых, "замечательных предела".
1.
. Геометрический смысл этой формулы заключается в том, что прямая является касательной к графику функции в точке .2.
. Здесь e — иррациональное число, приблизительно равное 2,72.Вопросы для самопроверки.
1.Приведите пример функции, не имеющей предела в данной точке.
2.При каких условиях из существования пределов слева и справа следует существование предела функции в данной точке.
3.Какова связь между понятиями предела функции и бесконечно малой функции?
4.Какова связь между бесконечно малой и бесконечно большой функцией?
5.Приведите примеры бесконечно малых функций: эквивалентных, одного порядка, разного порядка малости.