6.Чему равен предел суммы четырех функций?
7.В чем различие между понятиями предела и непрерывности функции в точке?
8.При каких условиях непрерывна сложная функция?
ТЕМА7. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ
Понятие производной. Геометрический смысл. Правила вычисления производных. Производная сложной функции. Таблица производных. Производные высших порядков. Понятие дифференциала и его геометрический смысл. Применение дифференциала для приближенных вычислений. Инвариантность дифференциала. Формула Тейлора и остаточный член. Формула Тейлора для элементарных функций. применение для приближенного вычисления функций и пределов. содержащих неопределенность. Возрастание и убывание функций. Экстремумы. выпуклость, вогнутость, точки перегиба. асимптоты. Построение графиков.
КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ
Рассмотрим функцию y=f(x), непрерывную в некоторой окрестности точки x. Пусть Dx приращение аргумента в точке x. Обозначим через Dy или Df приращение функции, равное f(x+Dx) – f(x). Отметим здесь, что функция непрерывна в точке x, если в этой точке бесконечно малому приращению аргумента Dx соответствует бесконечно малое приращение функции Df.
Отношение Df /Dx, как видно из рисунка 1, равно тангенсу угла a, который составляет секущая MN кривой y = f(x) c положительным направлением горизонтальной оси координат.
Отношение Dy / Dx или, что то же самое (f(x + Dx) f(x)) / Dx, можно рассматривать при заданном x как функцию аргумента Dx. Эта функция не определена в точке Dx = 0. Однако её предел в этой точке может существовать.
Если существует предел отношения (f(x + Dx) – f(x)) / Dx в точке Dx = 0, то он называется производной функции y = f(x) в точке x и обозначается y¢ или f¢(x):
.Нахождение производной функции y = f(x) называется дифференцированием.
Если для любого числа x из открытого промежутка (a, b) можно вычислить f¢(x), то функция f(x) называется дифференцируемой на промежутке (a, b).
Геометрический смысл производной заключается в том, что производная функции f(x) в точке x равна тангенсу угла наклона касательной к графику функции в этой точке.
Производная это скорость изменения функции в точке x. Из определения производной следует, что f¢ (x) » Df / Dx, причем точность этого приближенного равенства тем выше, чем меньше Dx. Производная f¢ (x) является приближенным коэффициентом пропорциональности между Df и Dx.
Таблица производных элементарных функций.
f(x) | f(x) | f(x) | |||
C | 0 | cosx | -sinx | ||
x | 1 | lnx | 1/x | tgx | 1/cos2x |
xn | nxn-1 | ax | axlna | arcsina | |
1/(2 ) | arccosa | - | |||
1/x | -1 / x2 | sinx | cosx | arctgx | 1/(1+x2) |
Основные свойства производной.
1. Если функция имеет производную в точке, то она непрерывна в этой точке.
2. Если существует f¢ (x) , и С ‑ произвольное число, то функция
имеет производную: (Cf(x))¢ = Cf¢ (x).3. Если существуют f¢ (x) и g¢ (x), то функция S(x) = f(x) + g(x) имеет производную: S¢ (x) = f¢ (x) + g¢ (x).
4. Если существуют f¢ (x) и g¢ (x), то функция P(x) = f(x)g(x) имеет производную: P¢ (x) = f¢ (x)g(x) + f(x)g¢ (x).
5. Если существуют f¢ (x) и g¢ (x) и при этом g(x) ¹ 0, то функция D(x) = f(x) / g(x) имеет производную: D¢ (x) = (f¢ (x) g(x) f(x) g¢ (x)) / g2(x).
Производная сложной функции.
Пусть функция g(x) имеет производную в точке x, а функция f(z) имеет производную в точке z = g(x). Тогда сложная функция F(x) = f(g(x)) имеет в точке x производную F¢ (x) = f¢ (z) g¢ (x).
Назовем функцию b (z) бесконечно малой в точке z = z0, если
.Пусть функции b (z) и g (z) являются бесконечно малыми в точке z = z0.. Функция b (z) называется бесконечно малой более высокого порядка, чем функция g (z), если
.Величины r1 и r2 в формулах (2) являются функциями аргумента Dx, бесконечно малыми в точке Dx = 0. Можно показать, что
. Это означает, что функции r1(Dx) и r2(Dx) являются бесконечно малыми функциями более высокого порядка, чем Dx, в точке Dx = 0.Таким образом приращение функции y = f(x) в точке, в которой существует её производная, может быть представлено в виде
Dy = f¢(x) Dx +b (Dx),
где b (Dx) ‑ бесконечно малая функция более высокого порядка, чем Dx, в точке Dx = 0.
Главная, линейная относительно Dx, часть приращения функции y = f(x), равная f¢ (x) Dx, называется дифференциалом и обозначается dy:
dy = f¢ (x) Dx.
,то есть производная функции f(x) равна отношению дифференциала функции к дифференциалу аргумента x.
Свойства дифференциала.
1. dC = 0 ( здесь и в следующей формуле C постоянная );
2. d(Cf(x)) = Cdf(x);
3. Если существуют df(x) и dg(x), то d(f(x) + g(x)) = df(x) + dg(x), d(f(x)g(x)) = g(x)df(x) + f(x)dg(x). Если при этом g(x) ¹0, то
.Пусть функция y=f(x) дифференцируема на некотором отрезке [ab]. В таком случае ее производная представляет собой тоже некоторую функцию х. Продифференцировав эту функцию, мы получим так называемую вторую производную (или производную второго порядка) функции f(x). Продолжая эту операцию, можно получить производные третьего, четвертого и более высоких порядков. При этом f`(x) будем называть производной первого порядка.
Производной n-го порядка (или n-й производной) от функции f(x) называется производная (первого порядка) от ее (n-1)-й производной.
Обозначение: у(n)=(y(n-1))΄=f(n)(x). Производные 2-го и 3-го порядка обозначаются соответственно y′΄ и y΄′΄.
Свойства производных высших порядков.
Основные свойства производных высших порядков следуют из соответствующих свойств первой производной:
1. (cf(x))(n)=c·f(n)(x).
2. (f(x)+g(x))(n)=f(n)(x)+g(n)(x).
3. Для y=xm y(n)=n(n-1)…(n-m+1)xm-n. Если m – натуральное число, то при n>my(n)=0.
4. Можно вывести так называемую формулу Лейбница, позволяющую найти производную n-го порядка от произведения функций f(x)g(x):
.Дифференциалы высших порядков.
Дифференциал от дифференциала функции называется ее вторым дифференциалом или дифференциалом второго порядка.
Обозначение: d²y=d(dy).
Дифференциалом n-го порядка называется первый дифференциал от дифференциала (n-1)-го порядка:
dny = d(dn-1y) = (f(n-1)(x)dn-1x)΄ = f(n)(x)dnx.
Свойства дифференциалов высших порядков.
1. Производную любого порядка можно представить как отношение дифференциалов соответствующего порядка:
.2. Дифференциалы высших порядков не обладают свойством инвариантности.
Точки экстремума функции.
Точка х0 называется точкой максимума (минимума) функции y = =f(x), если f(x) ≤ f(x0) (f(x) ≥ f(x0)) для всех х из некоторой δ-окрестности точки х0 .
Точки максимума и минимума функции называются ее точками экстремума.
Теорема (теорема Ферма). Если функция y = f(x) определена в некоторой окрестности точки х0, принимает в этой точке наибольшее (наименьшее) в рассматриваемой окрестности значение и имеет в точке х0 производную, то f′(x0)=0.
Произведение последовательных натуральных чисел 1∙2∙3∙…∙(n-1)n называется факториалом числа n и обозначается
n! = 1∙2∙3∙…∙(n-1)n .
Дополнительно вводится 0!=1.
Полученное представление функции называется формулой Тейлора, а Rn(x) называется остаточным членом формулы Тейлора.
Формы остаточного члена в формуле Тейлора.
Rn = o(x-a)nзапись остаточного члена в форме Пеано.
Применение формулы Тейлора для приближенных вычислений.
Заменяя какую-либо функцию, для которой известно разложение по формуле Тейлора, многочленом Тейлора, степень которого выбирается так, чтобы величина остаточного члена не превысила выбранное значение погрешности, можно находить приближенные значения функции с заданной точностью.
Найдем приближенное значение числа е, вычислив значение многочлена Тейлора (21.14) при n=8: