Докажем, что если для некоторой функции F(x)и полной системы функций выполняется соотношение ортогональности
(2.66)
то функция . Для этого из полной системы последовательной ортогонализацией построим полную ортогональную систему
причем иначе были бы линейно зависимы. Разлагая по новой системе функцию F(x), найдем
Подставляя это разложение в соотношение ортогональности (2.66), придем к равенству
(2.67)
Вычислим последний интеграл:
так как
Таким образом, уравнение (2.67) принимает вид
.
Полагая здесь k=1, получим , и так как , то . Полагая k=2, получим , и так далее. Следовательно, все коэффициенты в разложении функции F(x)равны нулю и поэтому F(x)тождественно равна нулю, что и требовалось доказать.
Возвращаясь теперь к задаче (2.62), (2.63), видим, что если бы мы нашли такую функцию y(x), удовлетворяющую условиям (2.63), и чтобы было ортогонально при любых , то это означало бы, что ,и задача (2.62), (2.63) была бы решена. Если же ортогональность есть только при , то в разложении по системе входят и более старшие коэффициенты, то есть
Метод Галеркина состоит в том, что решение задачи (2.62), (2.63) ищется в виде (2.64), причем требуют ортогональности к функциям полной системы для , то есть
(2.68)где
Это дает алгебраическую систему уравнений для определения коэффициентов ak. Найдя из нее коэффициенты, получим приближенное решение.
Если оператор нелинейный, то система (2.68) тоже будет нелинейной и решение ее весьма затруднительно. Если же оператор линейный, то система (2.68) также будет линейной и можно решать задачу с большим числом коэффициентов.
В методе Галеркина функция должна удовлетворять краевым условиям (2.63). Поэтому можно выбрать в виде
,
и коэффициенты найти как решение системы уравнений
Таким же образом отыскиваются функции . Выберем, например, полную систему в виде многочленов последовательных степеней:
.
Коэффициенты найдем из однородных краевых условий (2.65)
(2.65а)
при всех .
Так, для и условия (2.65а) принимают вид:
В этой системе из двух уравнений три неизвестных: и . Одну из них можно выбрать произвольно, положив, например, . Аналогично отыскивают коэффициенты для .
Для простых условий вида то есть функции можно вычислять по правилу
или
Отметим, что при нелинейном краевом условии вида, например, линейная комбинация (2.64) с произвольными коэффициентами akуже не будет удовлетворять этому краевому условию. Поэтому метод Галеркина применим только к задачам с линейными краевыми условиями, хотя допустим и нелинейный оператор L.
Пример 1. Методом Галеркина найти приближенное решение уравнения
с условиями
В качестве системы базисных функций выберем
Ограничимся четырьмя функциями , то есть k=0, 1, 2, 3. Решение будем искать в виде
Найдем функцию .
Так как
, а , ,
то получим
Потребует теперь ортогональности функции F(x) к функциям . Это приводит к системе