Смекни!
smekni.com

Геометрические построения на плоскости (стр. 3 из 7)

ς α

Построение. Строим последовательно: а) отрезок АВ, АВ = 0; б) сегмент А ς В, вмещающий данный угол α; в) окружность Аполлония на отрезке АВ; г) точку С , принадлежащую пересечению сегмента А ς В и окружности Аполлония.

Треугольник АВС - искомый.

Доказательство и исследование предлагаем читателям провести самостоятельно.

Метод геометрических преобразований

Сущность метода: при решении задачи, и прежде всего на первом этапе – анализе, наряду с данными и искомыми фигурами рассматривают другие фигуры, полученные из данных или искомых фигур (или их частей) с помощью некоторого геометрического преобразования (ГП). В зависимости от того, какое (ГП) выбрано, говорят о той или иной разновидности метода ГП (метод параллельного переноса, гомотетии, инверсии и т.д.). Рассмотрим примеры.

1. Параллельный перенос (ПП).

Сущность: наряду с данными и искомыми фигурами рассматривают другие фигуры, полученные из указанных фигур (или частей) с помощью ПП.

Задача. Достроить трапецию так, чтобы ее основания и диагонали были соответственно равны четырем данным отрезкам.

Анализ. Пусть ABCD - искомая трапеция. Сделаем параллельный перенос плоcкости, определяемый вектором ВС: ВС : BD → CF.

Треугольник ACFопределен по трем сторонам: AF = a + b, AC = d1, CF = d2.

План решения ясен. Предлагаем читателям завершить решение этой задача.

2. Осевая симметрия.

Задача. Даны прямая l и две точки А и В, принадлежащие одной плоскости, определяемой прямой l. Найти такую точку Х

l, чтобы сумма АХ + ХВ была минимальной.

Уклонимся от схемы. Рассмотрим Sе. Пусть A′ = Se (A), X = A′B∩ l. Покажем, что Х - искомая точка. В самом деле, для любой точки

Y

l: AX + XB = A′B < A′Y + YB = AY + YB (Y ≠ X).

Исследование. Задача всегда имеет решение, причем единственное.

3. Поворот.

Задача. Даны: угол АОВ и точка С внутри него. Построить равносторонний треугольник, одна вершина которого совпадает о точкой С, а две другие лежат на сторонах данного угла.

Анализ. Пусть ∆СDE - искомый. Сделаем поворот плоскости вокруг точки С на угол 60°: R60º (D) = E, R60º (OB) = O′B′, причем E = OB ∩ O′B′. Аналогично находим положение точки D: D = OB ∩ Rc-60º(OA).


Построение очевидно. Доказательство и исследование предлагаем провести самостоятельно.

4. Центральная симметрия.

Задача. Построить квадрат, если даны его центр О и две точки А и В на параллельных его сторонах.

Анализ. Пусть искомый квадрат построен. Тогда А’ и В, где лежат на А’ = Z0 (A), лежат на одной стороне квадрата. Аналогично В’ и А, где В' = Z0 (в), лежат на одной стороне квадрата. Тогда на прямых ВА' и АВ' лежат стороны квадрата. Дальнейшее продолжение не вызывает трудностей, предлагаем провести самим.

5. Метод подобия (гомотетии).

Сущность метода строят фигуру, подобную данной, не учитывая какой-нибудь линейный размер или специальное положение искомой фигуры относительно данных. Затем строят искомую (чаще всего гомотетией), учитывая, что коэффициент подобия равен отношению любых двух соответственных отрезков.

Задача. Даны угол и точка внутри него. Построить окружность, проходящую через точку А и касающуюся сторон угла.

Анализ. Центр искомой окружности должен лежать на биссектрисе данного угла. Снимем требование, чтобы окружность ω проходила через А (это подобно тому, что не требуется, чтобы расстояние от точки О до точки окружности равнялось известному отрезку а). Тогда легко построить окружность ω1 , касающуюся сторон утла. Окружности ω и ω1 гомотетичы (с центром в точке 0). Найдем образы точек А и В: А → А', В→В' . Очевидно, АВ׀׀А'В'.

Учитывая оказанное, можно наметить следующий план решения:

1) строим окружность СО1 , касающуюся сторон угла;

2) проводам ОА;

3) строим точки пересечения ω и ω1;

4) из точки А проводим прямую, параллельную прямой А'В'. Пусть В - одна из точек пересечения.

Построение и доказательство опускаем (самим).

Исследование. 1.Окружность ω1 можно построить и бесчисленным множеством способов.

2. Пересечением ОА и ω1 всегда являются две точки А' и А".

3. Через точку А можно провести две прямые, параллельные соответственно В'А' или В'А''. Эти две прямые l1 и l2 различны, если А

ОВ'; и совпадает, если А
ОВ'.

4. Пересечения l1 ∩ ОВ и l2 ∩ ОВ' существуют и единственны, если А ОВ' , т.е. задача в этом случае имеет два решения.

Если же А

ОВ', то этим способом центр искомой окружности не найдем. Для этого принципиально нового случая найдем новое специфичное решение: строим прямую, перпендикулярную ОА-биссектрисе данного угла. Далее проведем биссектрисы углов ОСА и МСА. Точки в1 и в2 - искомые центры.

Задача (наглядная). Построить треугольник по двум углам

, β

и медиане, проведенной из какой-нибудь вершины.

1. Строим треугольник АВ1С1

2. Подобным преобразованием получим искомый ΔАBC

6. Метод инверсии

Сущность метода: наряду с данными и искомыми фигурами рассматривают фигуры, инверсные им или их частям. Он применяется в тех случаях, когда построение фигуры, инверсной искомой, является более легкой (доступной). Построив инверсную построенной, получают искомую. Метод инверсии дает возможность решить трудные конструктивные задачи. Недостаток - громоздкость (большое число построений).

Задача. Даны: точка О и прямые а и в, не проходящие через О. Построить луч, выходящий из О, чтобы произведение его отрезков от О до точек пересечения с данными прямыми было равно

2, где
- длина отрезка
.

Анализ. Пусть [ОА) - искомый луч. Тогда ОА*ОВ=

2. Инверсия I относительно окружности ω(o,r) точку B переведет в точку A, прямую в→в', где b' - некоторая окружноcть, тогда A = a∩в'.

Построение. Строим последовательно: 1) ω(o,r); 2) в', где в' = I (в) окружность, проходящая через О; 3) А, А

а ∩ в; 4) [ОА) - искомый.

Доказательство. Через В обозначим пересечение в ∩ [ОА). Тогда В – прообраз А, т.к. А = [ОА) ∩ в'→[ОА) ∩ в = В. По определению инверсии имеем: ОА*ОВ = r2.

Исследование. Если: a ∩ в' = Ø, то нет решения; - точка касания, то одно решение; a ∩ в' = {A}, A – точка касания, то одно решение; a ∩ в' = {A1 A2, A1 ≠ A2, то два решения.

Алгебраический метод.

Сущность: решение задачи сводят к построению отрезка, длину которого можно выразить через длины данных отрезков с помощью формул. Затем строят искомый отрезок по полученной формуле.

Задача. Даны: угол АОВ и две точки С и D да луче OВ. Найти на луче [ОА) точку X, чтобы величина угла СХDбыла наибольшей.

Анализ. Пусть точка X найдена. Очевидно, точка X является точкой касания окружности, проходящей через С и D. Обозначим длину отрезка ОХ через х.

Имеем:

х2 = |ОС|*|ОD|, |ОС| и |ОD | -

длины известных отрезков ОС и ОD) . План решения состоит из двух шагов: Строим

так, чтобы

и х = [OA) ∩ω(O,x),

где

– длина отрезка х.

Построение, доказательство, исследование предлагаем провести самим.

Построение отрезков, заданных формулами.

Алгебраический метод решения задач на построение сводится к построению отрезков, заданных формулами.

Полная формулировка задачи: даны отрезки

. Пусть а, в, с,…, d – их длина при некоторой единице измерения. Требуется построить с помощью данных инструментов (циркуля и линейки) отрезок
, длина которого x(при той же единице измерения) выражается через длины данных отрезков формулой х = f (a, в2, с,…, d). Будем рассматривать такие значения а, в, с,…,d, при которых f имеет смысл и положительна.