Мы уже знаем, как cтроить выражения
в). К рассмотренным построениям можно свести построение более сложных формул:
1)
2)
3)
Все построенные выше формулы обладают одним общим cвойcтвом: они являютcя однородными выражениями первой степени. Напоминаем, выражение F(а,…,с) называют однородным степени 11, если
F(ta,…,tc) = tn · F (a,…,c).
Пользуясь понятием однородной функции, мо;но выделить некоторые, классы алгебраичеcких выражений, которые могут быть построены циркулем и линейкой. Например, циркулем и линейкой можно построить:
1) Oтрезок, заданный формулой
где Pn+1 (…) и Pn(a,b,…,c) - однородные многочлены с рациональными коэффициентами от длин а,в,…,с отрезков
Пусть
Pn+1 =
Далее, пусть
Разделим чиcлитель на dn , знаменатель – на dn-1 .
Выражение
Следовательно, можно построить каждое слагаемое, а потому и весь числитель:
2) отрезок, заданный формулой
3) Замечание. При вычерчивании кривых иногда приходится строить алгебраические выражения, не являющиеся однородными первой степени. Пусть надо построить отрезок
Правило: построение произвольного выражения от n аргументов всегда можно свести к построению некоторого однородного выражения первой степени от n+1 аргументов. Достигается это выбором единицы измерения.
Выберем некоторый отрезок
Если сумеем построить отрезок
Примеры:
1)
2)
3)
4)
5)
Разрешимость задач на построение с помощью циркуля и линейки.
Для краткости операции «+», «-», «·», «:» и извлечение арифметического квадратного корня» назовем основными действиями.
Теорема. Отрезок, длина которого задается положительной функцией для данных отрезков, может быть построен циркулем и линейкой тогда и только тогда, когда длина искомого отрезка выражается через длины данных отрезков при помощи конечного числа основных действий.
Достаточность. С помощью циркуля и линейки можно построить отрезок
а-в
ав (за счет
Так, как по условию длина искомого отрезка выражается через длины данных отрезков с помощью конечного числа основных действий, то остается единственный возможный случай, когда промежуточный отрезок не сможем построить - это построение разности а-в при а < в.
В таких случаях перейдем к положительной разности с помощью тождества а - в = - (в - а).
Теперь можно последовательно выполнить все построения, соответствующие основным операциям, и через конечное число шагов получим искомый отрезок.
Необходимость. Ясно, что построение отрезка
Пусть А (
Заметим, что любые построенные точки в ходе построения появляются двояко: либо выбираемые произвольно, либо как общие точки двух ранее построенных линий.
В первом случае выберем только такие точки, координаты которых выражаются через а1,…,ар при помощи конечного числа основных действий.
Во втором случае точка получается одним из следующих способов:
а) пересечение прямых (причем каждая прямая проведена через 2 построенные точки):
б) пересечение окружности и прямой (окружность построена через 2 построенные точки);
в) пересечение двух окружностей.
Рассмотрим случай а). Пусть прямая l1 проведена через точки
C1 (x1,y1) и D1 (x2,y2.). Покажем, что числа х1, у1, х2 и у2 могут быть выражены через а1,…,ар с помощью конечного числа основных действий (К4ОД). Действительно, пусть уравнение прямой l1 имеет вид:
в1х + с1у = d1