Мы уже знаем, как cтроить выражения
, , , , х = а ± в,(а - в, при а >в). К рассмотренным построениям можно свести построение более сложных формул:
1)
, n = натуральное число; делается так: , причем , если n = p·q, , если n = p2 ± q2;2)
3)
· и т.д.Все построенные выше формулы обладают одним общим cвойcтвом: они являютcя однородными выражениями первой степени. Напоминаем, выражение F(а,…,с) называют однородным степени 11, если
F(ta,…,tc) = tn · F (a,…,c).
Пользуясь понятием однородной функции, мо;но выделить некоторые, классы алгебраичеcких выражений, которые могут быть построены циркулем и линейкой. Например, циркулем и линейкой можно построить:
1) Oтрезок, заданный формулой
,где Pn+1 (…) и Pn(a,b,…,c) - однородные многочлены с рациональными коэффициентами от длин а,в,…,с отрезков
степени соответственно n+1 и n.Пусть
Pn+1 =
Далее, пусть
- произвольный отрезок, d - его длина (в той же единице измерения).Разделим чиcлитель на dn , знаменатель – на dn-1 .
Выражение
представляет сумму одночленов вида .Следовательно, можно построить каждое слагаемое, а потому и весь числитель:
. Аналогично, . Наконец строим - отрезок длины х, где ;2) отрезок, заданный формулой
, где – ( (…) – однородная рациональная функция 2 степени с рациональными коэффициентами. Делается так: , где (R2(…) - отношение двух однородных многочленов , тогда как и выше, строим3) Замечание. При вычерчивании кривых иногда приходится строить алгебраические выражения, не являющиеся однородными первой степени. Пусть надо построить отрезок
, длина которого x = f(a,b,…,c), где f(…) не является однородной первой cтепени, например, y = x3 +1.Правило: построение произвольного выражения от n аргументов всегда можно свести к построению некоторого однородного выражения первой степени от n+1 аргументов. Достигается это выбором единицы измерения.
Выберем некоторый отрезок
в качестве единичного, e =1. -однородная функция первой степени.Если сумеем построить отрезок
по этой формуле, то он и будет искомым при выбранной, единице масштаба. Ясно, что получим различные неравные отрезки в зависимости от выбора .Примеры:
1)
2)
3)
4)
5)
Разрешимость задач на построение с помощью циркуля и линейки.
Для краткости операции «+», «-», «·», «:» и извлечение арифметического квадратного корня» назовем основными действиями.
Теорема. Отрезок, длина которого задается положительной функцией для данных отрезков, может быть построен циркулем и линейкой тогда и только тогда, когда длина искомого отрезка выражается через длины данных отрезков при помощи конечного числа основных действий.
Достаточность. С помощью циркуля и линейки можно построить отрезок
, длина которого x равна соответственно: а+ва-в
ав (за счет
, е = 1) (- « -)Так, как по условию длина искомого отрезка выражается через длины данных отрезков с помощью конечного числа основных действий, то остается единственный возможный случай, когда промежуточный отрезок не сможем построить - это построение разности а-в при а < в.
В таких случаях перейдем к положительной разности с помощью тождества а - в = - (в - а).
Теперь можно последовательно выполнить все построения, соответствующие основным операциям, и через конечное число шагов получим искомый отрезок.
Необходимость. Ясно, что построение отрезка
равносилъно построению его концов. Так как можно построить, то существует конечная последовательность основных построений, в результате выполнения которых на каком-то m -м шаге будет построен один конец (обозначим его через А ), а на к -ом - другой конец (точку в ). На плоскости построим прямоугольную декартовую систему координат.Пусть А (
,β), В (γ, δ) - координаты построенных точек. Данные отрезки построим на положительной полуоси ОХ, тогда длины этих отрезков выражаются числами а1,…,ар ς (А, В) = х = т.е. длина отрезка выражается через числа , β, γ, δ с помощью конечного числа основных действий. Если докажем, что сами числа , β, γ, δ выражаются через а1,…,ар с помощью конечного числа основных действий, то теорема будет доказана (длина отрезка выражается с помощью конечного числа основных действий).Заметим, что любые построенные точки в ходе построения появляются двояко: либо выбираемые произвольно, либо как общие точки двух ранее построенных линий.
В первом случае выберем только такие точки, координаты которых выражаются через а1,…,ар при помощи конечного числа основных действий.
Во втором случае точка получается одним из следующих способов:
а) пересечение прямых (причем каждая прямая проведена через 2 построенные точки):
б) пересечение окружности и прямой (окружность построена через 2 построенные точки);
в) пересечение двух окружностей.
Рассмотрим случай а). Пусть прямая l1 проведена через точки
C1 (x1,y1) и D1 (x2,y2.). Покажем, что числа х1, у1, х2 и у2 могут быть выражены через а1,…,ар с помощью конечного числа основных действий (К4ОД). Действительно, пусть уравнение прямой l1 имеет вид:
в1х + с1у = d1