Смекни!
smekni.com

Выборочное наблюдение (стр. 3 из 4)

Таким образом, можно с вероятностью 0,954 утверждать, что доля расходов населения области на платные услуги ожидается в пределах не менее 30,7 % и не более 38,1 %.

Аналогично вычисляется ошибка типической выборки для выборочной средней (для варьирующего признака).

Пример 4. В механическом цехе завода в десяти бригадах работает 100 рабочих. В целях изучения квалификации рабочих была произведена 20% - ная серийная бесповторная выборка, в которую вошли 2 бригады. Получено следующее распределение обследованных рабочих по разрядам:

Рабочие Разряды рабочих в бригаде 1 Разряды рабочих в бригаде 2 Рабочие Разряды рабочих в бригаде 1 Разряды рабочих в бригаде 2
1 2 3 4 5 2 4 5 2 5 3 6 1 5 3 6 7 8 9 10 6 5 8 4 5 4 2 1 3 2

Необходимо определить с вероятностью 0,997 пределы, в которых находится средний разряд рабочих механического цеха.

Решение:

Определим выборочные средние по бригадам и общую среднюю:

Определим межсерийную дисперсию:

Рассчитаем среднюю ошибку выборки:

где R-число серий в генеральной совокупности;

r-число отобранных серий.

Вычислим предельную ошибку выборки с вероятностью 0,997

С вероятностью 0,997 можно утверждать, что средний разряд рабочих механического цеха находится в пределах

,
.

4 Определение необходимой численности выборки

В практике проведения выборочного наблюдения возникает потребность в определении численности выборки, которая необходима для обеспечения определенной точности расчета генеральных характеристик – средней и доли. Формально вопрос решается преобразованием формул для расчета ошибок выборки. Предельная ошибка выборки, вероятность ее появления и вариация признака предварительно известны. Тогда необходимая численность выборки при заданных «

» и «
» будет равна:

- при повторном отборе. (7)

- при бесповторном отборе. (8)

Значения дисперсии получают из аналогичных предыдущих выборочных обследований. В случае если последние не производились, проводят микровыборку с единственной целью – приблизительной оценки уровня дисперсии.

При случайном отборе используются формулы (7) и (8), при механическом только – (8).

Для типической выборки:

. (9)

Для серийной выборки [1, с. 107, 108]:

. (10)

Пример 5. Сколько фирм необходимо проверить налоговой инспекции района, чтобы ошибка доли фирм, несвоевременно уплачивающих налоги, не превысила 5%? По данным предыдущей проверки доля таких фирм составила 18%. Доверительную вероятность принять равной 0,954.

Решение:

Поскольку способ отбора не указан, расчет следует производить по формуле для повторного отбора (7):

(фирм).

5 Оценка существенности расхождения выборочных средних

К расчетам ошибок случайной выборки прибегают не только для того, чтобы оценить степень репрезентативности выборочных данных, но и для того, чтобы сравнить между собой средние величины данного признака по двум совокупностям.

Известно, например, что средний расход сырья на единицу продукции при существующем методе производства составляет 2,8 условных единиц. После внесения изменений в существующую технологию изготовления продукции по результатам проверки достаточно большой партии изделий средний расход сырья на единицу продукции составил 2,6 условные единицы. Средняя ошибка выборки оказалась равной 0,1. Возникает вопрос, действительно ли применение нового метода обработки приводит к снижению материалоемкости продукции?

Нулевая гипотеза состоит в том, что между новым и существующим методами производства изделий отсутствуют существенные различия с точки зрения влияния их на материалоемкость, т.е. что между генеральными средними при старом и новом методах производства нет существенной разницы, а отклонение выборочной средней от достигнутого уровня при существующем методе обусловлено только случайностями выборки, т.е.

означает, что
, где
и
– средний расход сырья на единицу продукции соответственно при существующем и новом методах производства.

Альтернативная гипотеза может быть сформулирована двояко:

1. Применение нового метода обработки приводит к изменению расхода сырья на единицу продукции, т.е.

состоит в том, что
. Примем уровень значимости
равным 0,05, тогда
и критическая область соответственно задается неравенством
. По таблицам интегральной функции Лапласа определяем коэффициент доверия t=1,96. Таким образом, величина предельного расхождения двух средних с вероятностью, равной 0,95, не должна превышать
. Следовательно, с вероятностью 0,95 доверительные пределы для генеральной средней при новом методе будут равны
.

Средний расход материала при применении новой технологии составляет 2,6, т.е. попадает в критическую область. Следовательно, данные наблюдения не являются совместимыми с выдвинутой гипотезой

о том, что между новым и существующим методами производства изделий отсутствуют существенные различия с точки зрения влияния их на материалоемкость.

2. Применение нового метода обработки приводит к снижению расхода сырья на единицу продукции, т.е.

состоит в том, что
. В этом случае рассматривается область больших отрицательных отклонений, т.е. при
. В данном варианте критическая область определяется неравенством
. Нулевая гипотеза не будет опровергаться, если средний расход материала на единицу продукции будет больше величины
. Так как по новой технологии расход сырья составляет 2,6 условных единиц, то с вероятностью 0,995 можно считать, что нулевая гипотеза должна быть отвергнута и что, следовательно, применение новой технологии приводит к снижению расхода сырья на изготовление продукции. [3, с. 192]

6 Малые выборки

Выборочное наблюдение, объем которого не превышает 20 единиц, называется малой выборкой. К малой выборке прибегают при проведении экспериментов в опытном хозяйстве или при проверке качества продукции, когда это связано с порчей или уничтожением ее и в других подобных случаях. Для определения средней и предельной ошибки при малой выборке можно, это математически доказано, пользоваться теми же формулами, что и при большой, но только с двумя особенностями.

1. Среднее квадратическое отклонение малой выборки исчисляется по формуле

.

В этой формуле сумма квадратов отклонений от средней делится не на

, а на
, т.е. на число степеней свободы вариации.

2. Уровень вероятности ошибки средней и доли зависит не только от коэффициента доверия

, но и от объема выборки
. Для количественной оценки этой зависимости английский статистик Госсет, писавший под псевдонимом Стьюдент, разработал специальную таблицу, извлечение из которой дано в табл. 1.