Смекни!
smekni.com

Интеграл дифференциального уравнения

АНО ВПО «НАЦИОНАЛЬНЫЙ ИНСТИТУТ ИМЕНИ ЕКАТЕРИНЫ ВЕЛИКОЙ»

Контрольное задание

По дисциплине: «Математика»

Москва 2010 г.


Контрольное задание:

Упражнения

1. Дана последовательность аn=(3n-5)/(4n+1). Установить номер n0, начиная с которого выполняется неравенство │аn-А │ < 1/500.

Отв. n0=719.

Найти:

2. lim (3-√х)/(х2-81).Отв. –1/108.

х→9

3. lim (5х2-8)/(х3-3х2+11).Отв. 0.

х→∞

Проверить непрерывность следующих функций:

4. у=5х/(х3+8).Отв. При всех х≠–2 функция непрерывна.

5. у=(х2+4)/ √(х2-36). Отв. Функция непрерывна при всех значениях

│х│>6.

6. Определить точки разрыва функции у=(8х+2)/(16х2-1).

Отв. Точки х1=–1/4 и х2=1/4.

Задача 1

Найти общий интеграл дифференциального уравнения:

Решение


Выполним разделение переменных, для этого разделим обе части уравнения на

:

Проинтегрируем обе части уравнения и выполним преобразования:

Ответ

Задача 2

Проинтегрировать однородное дифференциальное уравнение:


Решение

Решение однородных дифференциальных уравнений осуществляется при помощи подстановки:

,

С учетом этого, исходное уравнение примет вид:

Выполним разделение переменных, для этого умножим обе части уравнения на

, получим,

Проинтегрируем обе части уравнения и выполним преобразования:

Возвращаясь к переменной y, получим общий интеграл исходного уравнения:


Ответ

Задача 3

Найти общий интеграл дифференциального уравнения:

Решение

Покажем, что данное уравнение является однородным, т.е. может быть представлено в виде,

. Преобразуем правую часть уравнения:

Следовательно, данное уравнение является однородным и для его решения будем использовать подстановку,

С учетом этого, уравнение примет вид:


Выполним разделение переменных, для этого умножим обе части уравнения на

,

Проинтегрируем обе части уравнения,

Возвращаясь к переменной y, получим,

Ответ

Задача 4

Решить линейное дифференциальное уравнение:

Решение

Составим характеристическое уравнение и найдем его корни:

Так как корни характеристического уравнения действительные и различны, то решение дифференциального уравнения будет иметь вид:

Ответ

Задача 5

Найти общее решение дифференциального уравнения:

Решение

Общее решение неоднородного уравнения будем искать в виде:

,

где

– частное решение исходного неоднородного ДУ,
– общее решение соответствующего однородного уравнения:

Составим характеристическое уравнение и найдем его корни:

Так как корни характеристического уравнения действительные и совпадают, то общее решение однородного ДУ будет иметь вид:


Учитывая, что правая часть имеет специальный вид, то частное решение неоднородного уравнения будем искать в виде,

,

где A, B, C – неопределенные коэффициенты. Найдем первую и вторую производные по x от

и подставим полученные результаты в исходное уравнение:

Приравняем коэффициенты при соответствующих степенях x и определим их:

Следовательно, частное решение неоднородного ДУ примет вид:

Окончательно, общее решение исходного ДУ:

Ответ


Задача 6

Решить уравнение:

Решение

Общее решение неоднородного уравнения будем искать в виде:

,

где

– частное решение исходного неоднородного ДУ,
– общее решение соответствующего однородного уравнения:

Составим характеристическое уравнение и найдем его корни:

Так как корни характеристического уравнения действительные и различны, то общее решение однородного ДУ будет иметь вид:

Учитывая, что правая часть имеет специальный вид, то частное решение неоднородного уравнения будем искать в виде,

,

где A, B, C – неопределенные коэффициенты. Найдем первую и вторую производные по x от

и подставим полученные результаты в исходное уравнение:

Приравняем коэффициенты при соответствующих степенях x и определим их:

Следовательно, частное решение неоднородного ДУ примет вид:

Окончательно, общее решение исходного ДУ:

Ответ

Комментарии к решению

В задаче №1, опечатка в предполагаемом ответе, упущен показатель степени при x.

В задаче №3, ответ следует оставить в виде, содержащем модуль

, т.к. нет достаточных оснований его снять.