Смекни!
smekni.com

Методы отсечения (стр. 3 из 6)

Последовательность (£, C) – задач пометим индексом k=0,1,…, соответствующим номеру итерации в последовательном приближении к решению исходной (£ц, C) – задачи, и обозначим (£k, C). При этом (£0, C) – задача соответствует (£, C) – задаче (задаче без требования целочисленности).

Переменную zi, которая определяется дополнительным линейным ограничением (7) и строится по некоторой нецелочисленной координате оптимального решения (£k, C) – задачи (k =0, 1, 2,…) обозначим xn+k+l.

Чтобы размерность последовательности (£k, C) – задач не возрастала, вычеркнем из симплекс-таблицы переменную, по которой построено дополнительное линейное ограничение.

После сделанных замечаний перейдем непосредственно к изложению вычислительной схемы.

1. Решим (£k, C) – задачу (вначале k = 0) методом последовательного улучшения плана.

Пусть в базис оптимального решения вошли векторы As1,…, Asm. Параметры последней симплексной таблицы обозначим через xij:

.

Если, все базисные составляющие

оптимального решения x(£k, C) (£k, C) – задачи целые, то x(£k, C) = x(£ц, C). Если некоторая координата xio оптимального решения x(£k, C) нецелая, то перейдем к п. 2.

2. Если среди совокупности координат оптимального решения x(£k, C) имеется единственная нецелая координата, то дополнительное линейное ограничение (17) строится по этой координате. Если нецелых координат в x(£k, C) более одной, то выберем координату с наименьшим номером. Пусть ею оказалась xi0. Составим дополнительное линейное ограничение

(18)

(19)

3. Добавим условия (18, 19) к условиям (£k, C) – задачи. Получим новую (£k+1, C) – задачу. Так как оптимальное решение x(£k, C) (£k, C) – задачи определяло одну из вершин многогранника условий, то оно может быть выбрано в качестве первоначального опорного решения для вновь полученной задачи. А это означает, что последнюю симплексную таблицу (£k, C) – задачи можно взять в качестве исходной для (£k+1, C) – задачи, дополнив ее условием (18).

Итак, симплексная таблица для (£k+1, C) – задачи получается из последней симплексной таблицы для (£k, C) – задачи путем окаймления (i+1) – й строкой с элементами:

где

– небазисные переменные (£k, C) задачи.

Получим новую задачу, переменными которой являются

. Условия этой задачи разрешены относительно xsl,…, xsm переменных и новой переменной xn+k+1, а линейная форма выражена через небазисные переменные (£k, C) – задачи. Так как мы занимаемся максимизацией F(x) и решение х* для (£k, C) – задачи оптимально, то все Di > 0. Поэтому процесс перехода к новому решению (£k+1, C) – задачи не может быть осуществлен по методу уточнения плана. В то же время
и поэтому вектор А0 симплексной таблицы не является опорным решением для (£k+1, C) – задачи, так как решением называется вектор, все координаты которого неотрицательны и удовлетворяют условию принадлежности области £k+l. Поэтому назовем полученный вектор
псевдорешением задачи (£k+1, C) и перейдем к дальнейшему преобразованию симплекс-таблицы.

Обозначим через k номер псевдорешения (£k, C) – задачи; тогда направляющей строкой является i+k+1-я строка, k =0, 1, 2,…. Поэтому на каждом этапе преобразования таблицы вектор Ai+k+i будет выводиться из таблицы. Можно доказать, что через конечное число шагов либо будет найдено целочисленное решение, либо будет обнаружена ее неразрешимость, а тем самым неразрешимость (£ц, C) – задачи.

Если решение (£k, C) – задачи завершается построением оптимального целочисленного решения x*, то m, первых его компонент определяют решение целочисленной задачи; если среди координат х* есть дробные, то одна из дробных компонент (ранее определенным правилом) порождает дополнительное ограничение и процесс решения должен быть продолжен с новой окаймляющей строкой. Строка, используемая ранее для окаймления, вычеркивается и больше для построения расширенных задач не восстанавливается.

Процедуру решения (£k, C) – задачи (k=0, 1,…) и анализа полученного решения назовем большой итерацией. Номер большой итерации совпадает с номером решаемой (£k, C) – задачи.

Результатом большой итерации является переход к новой (£k+1, C) – задаче либо окончание решения задачи.

Сделаем некоторые пояснения к блок-схеме алгоритма.


Введем: 1) ячейку i, в которой будем запоминать номер строки, на основании которой строится очередное дополнительное линейное ограничение, 2) счетчик r, соответствующий номеру проводимой большой итерации. Обозначим x*(£r, C) оптимальное решение (£r, C) – задачи. Заметим, что обозначение (£r, C) – задача, эквивалентное (£r, C), введено в блок-схеме для удобства записи.

При некоторых условиях удается доказать теорему о конечности первого алгоритма Гомори, которую мы приведем без доказательства.

Теорема. Пусть множество оптимальных планов задачи (£0, C) ограничено и выполняются следующие условия:

1) сi – целые коэффициенты целевой функции F(x) (i =1,2,…, n), строка целевой функции в симплексной таблице учитывается при выборе строки для построения правильного отсечения;

2) справедливо одно из двух утверждений: либо целевая функция

ограничена снизу на Сo, либо задача (£ц, C) имеет хотя бы один план х'.

Тогда первый алгоритм Гомори требует конечного числа больших итераций.

4. Второй алгоритм Гомори

Второй алгоритм Р. Гомори предназначается для решения задач, в которых требование целочисленности наложено на некоторые переменные (в частности и на все). Мы его рассмотрим применительно к задачам частично целочисленного типа, понимая, что вычислительная схема будет справедливой и для задач, полностью целочисленных.

Пусть в области, определенной условиями:

(20)

(21)

– целые,
(22)

требуется максимизировать функцию

(23)

Метод решения задачи (20–23) основывается на той же идее, что и метод решения полностью целочисленных задач. А именно: строится область £k, которая при k = 0 определяется условиями (20–21); решается полученная при этом задача линейного программирования (20–21, 23). Если задача (20–21, 23) оказывается разрешимой, то полученное оптимальное решение ее анализируется на допустимость для исходной задачи целочисленного программирования (20–23). Если найденное решение оказывается целочисленным, то одновременно оно будет оптимальным для (20–23). Если оптимальное решение (£k, C) – задачи оказывается недопустимым для исходной задачи (20–23), то осуществляется построение правильного отсечения и переход к решению новой задачи,

Второй алгоритм Р. Гомори формулируется в виде следующей теоремы:

Теорема. Пусть х(£k, C) – оптимальное решение (£k, C) – задачи,

– элементы соответствующей ему симплексной таблицы. Если
– нецелое
, то

(24)

– целое, (25)

где

(26)

определяет правильное отсечение. Блок-схема второго алгоритма Р. Гомори аналогична блок-схеме первого алгоритма Р. Гомори и отличается лишь правилом построения коэффициентов правильного отсечения.

Правило построения правильного отсечения

Пусть x(£k, C) не удовлетворяет условию целочисленности,

– элементы симплексной таблицы, соответствующей полученному оптимальному решению (£k, C) – задачи. Выберем i0=min {i | i Î (1, 2,…, n), xi0k нецелое} и строим правильное отсечение по формулам (24 – 26).