Пример. Пример заимствован из книги И. М. Виноградова "Основы теории чисел". Итак: разложить 105/38 в цепную дробь.
Включаем алгоритм Евклида:
105 = 38 · 2 + 29
38 = 29 · 1 + 9
29 = 9 · 3 + 2
9 = 2 · 4 + 1
2 = 1 · 2
Неполные частные я специально подчеркнул потому, что теперь для написания ответа нужно аккуратно расположить их подряд на этажах цепной дроби перед знаками плюс:
Область целостности (или целостное кольцо, или область цельности) — понятие абстрактной алгебры: ассоциативное коммутативное кольцо с единицей, в котором 0≠1 и произведение двух ненулевых элементов не равно нулю. Условие 0≠1 исключает из рассмотрения тривиальное кольцо {0}.
Эквивалентное определение: область целостности — это ассоциативное коммутативное кольцо, в котором нулевой идеал {0} является простым. Любая область целостности является подкольцом своего поля частных.
· Простейший пример области целостности — кольцо целых чисел
.· Любое поле является областью целостности. С другой стороны, любая артинова область целостности есть поле. В частности, все конечные области целостности суть конечные поля.
· Кольцо многочленов с коэффициентами из некоторого целостного кольца также является целостным. Например, целостными будут кольцо
многочленов одной переменной с целочисленными коэффициентами и кольцо многочленов двух переменных с вещественными коэффициентами.· Множество действительных чисел вида
есть подкольцо поля , а значит, и область целостности. То же самое можно сказать про множество комплексных чисел вида a + bi, где a и b целые (множество Гауссовых целых).· Пусть U — связное открытое подмножество комплексной плоскости
. Тогда кольцо H(U) всех голоморфных функций будет целостным. То же самое верно для любого кольца аналитических функций, определённых на связном подмножестве аналитического многообразия.· Если K — коммутативное кольцо, а I — идеал в K, то факторкольцо K / I целостное тогда и только тогда, когда I — простой идеал.
Делимость, простые и неприводимые элементы
Пусть a и b — элементы целостного кольца K. Говорят, что «a делит b» или «a — делитель b» (и пишут
), если и только если существует элемент такой, что ax = b.Делимость транзитивна: если a делит b и b делит c, то a делит c. Если a делит b и c, то a делит также их сумму b + c и разность b - c.
Для кольца K с единицей элементы
, которые делят 1, называются делителями единицы, а иногда и просто единицами. Они и только они, обратимы в K. Единицы делят все остальные элементы кольца.Элементы a и b называются ассоциированными, если a делит b и b делит a. a и b ассоциированны тогда и только тогда, когда a = b * e, где e — обратимый элемент.
Необратимый элемент q целостного кольца называется неприводимым, если его нельзя разложить в произведение двух необратимых элементов.
Ненулевой необратимый элемент p называется простым, если из того, что
, следует или . Это определение обобщает понятие простого числа в кольце , однако учитывает и отрицательные простые числа. Если p — простой элемент кольца, то порождаемый им главный идеал (p) будет простым. Любой простой элемент неприводим, но обратное верно не во всех областях целостности.· Любое поле, а также любое кольцо с единицей, содержащееся в некотором поле, является областью целостности.
Обратно, любая область целостности может быть вложена в некоторое поле. Такое вложение дает конструкция поля частных.
· Если A ― область целостности, то кольцо многочленов и кольцо формальных степенных рядов над A также будут областями целостности.
· Если A ― коммутативное кольцо с единицей и I ― некоторый идеал в A, то кольцо A / I является областью целостности тогда и только тогда, когда идеал I прост.
· Кольцо будет областью целостности тогда и только тогда, когда его спектр есть неприводимое топологическое пространство.
· Прямое произведение колец никогда не бывает областью целостности, так как единица первого кольца, умноженная на единицу второго кольца, даст 0.
· Тензорное произведение целостных колец тоже будет целостным кольцом.
Иногда в определении области целостности не требуют коммутативности. Примерами некоммутативных областей целостности являются тела, а также подкольца тел, содержащие единицу, например целые кватернионы. Однако, вообще говоря, неверно, что любая некоммутативная область целостности может быть вложена в некоторое тело.
В коммутативной алгебре кольцом частных S-1R кольца R (коммутативного с единицей) по мультипликативной системе
называется пространство дробей с числителями из R и знаменателями из S с арифметическими операциями и отождествлениями, обычными для дробей.Мультипликативной системой в кольце R называется подмножество S в R, содержащее 1, не содержащее нуля и замкнутое по умножению (в кольце R). Для мультипликативной системы S множество
образует идеал в кольце R. В случае, когда множество S не содержит делителей нуля кольца R, идеал IS = (0) и система S называется регулярной. Если R - целостное кольцо, в ней всякая мультипликативная система регулярна.Элементами кольца частных кольца R по мультипликативной системе S являются формальные дроби вида r/s, где r - произвольный элемент R, а s - элемент множества S. Две дроби r1 / s1 и r2 / s2 считаются эквивалентными (представляют один и тот же элемент кольца частных), если
. Операции сложения и умножения определяются как обычно:Проверяется, что если в сумме или произведении дроби заменить на эвивалентные, новый результат будет выражаться дробью, эквивалентной прежней. С такими операциями множество S − 1R приобретает структуру коммутативного кольца с единицей. Нулём в нём служит дробь 0/1, единицей - дробь 1/1.
Свойства
· Кольцо частных имеет каноническую структуру алгебры над кольцом R, так как вместе с кольцом S-1R сразу определён и канонический гомоморфизм кольца R в S-1R (каждому элементу r из R соответствует дробь r/1). Ядром этого гомоморфизма является идеал IS. В случае, если система S регулярна (не содержит делителей нуля), этот гомоморфизм инъективен, и кольцо R, таким образом, вложено в своё кольцо частных по системе S. При этом дробь r/s является единственным решением уравнения sx = r.
· Если оба элемента r и s принадлежат S, тогда в кольце S-1R содержатся дроби r/s и s/r. Их произведение равно 1, следовательно, они обратимы. Обратно: каждый обратимый элемент кольца S-1R имеет вид er/s, где r и s принадлежат S, а e - обратимый элемент кольца R.
· Если кольцо R не имеет (собственных) делителей нуля (т.е. это целостное кольцо), множество всех ненулевых элементов образует мультипликативную систему S. Соответствующее кольцо частных будет полем, которое называется полем частных целостного кольца. Отсюда следует, что каждое целостное кольцо вложено в некоторое поле, а именно - в своё поле частных.
· Если R - евклидово кольцо, то всякое кольцо, промежуточное между R и его полем частных, является кольцом частных кольца R по некоторой мультипликативной системе S.