МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
Учреждение образования
«Гомельский государственный университет
имени Франциска Скорины »
Математический факультет
Кафедра алгебры и геометрии
Допущена к защите
Зав. кафедрой _________ Шеметков Л.А.
«_____» ____________ 2006 г.
ТЕОРИЯ ОСТАТКОВ
ДИПЛОМНАЯ РАБОТА
Исполнитель:
студентка группы М-52 ____________ Клименко Ю.
Научный руководитель:
к.ф-м.н., доцент кафедры
алгебры и геометрии ____________ Подгорная В.
Рецензент:
ст. преподаватель
кафедры высшей
математики ____________ Курносенко Н.
Гомель 2008
Содержание
Введение. 3
1 Алгоритм Евклида. 4
1.1 Определения алгоритма. 4
1.2 Алгоритм Евклида. 5
1.3 Применения алгоритма Евклида. 12
2 Делимость в кольцах. 17
2.1 Область целостности. 17
2.2 Кольцо частных. 19
2.3 Евклидовы кольца. 21
3 Сравнения и арифметика остатков. 27
4 Функция Эйлера. 41
5 Китайская теорема об остатках. 53
Заключение. 62
Список использованных источников. 63
История арифметики остатков начинается с исследований К.Ф. Гаусса, который впервые стал рассматривать сравнения. В дальнейшем была обнаружена связь теории сравнений с астрономическими задачами (китайская теорема об остатках). В результате многочисленных исследований теория остатков была распространена на кольца произвольной природы. В последнее время обнаружилось приложение этой теории в криптографии. В дипломной работе изложена теория остатков на современном алгебраическом языке.
Дипломная работа состоит из пяти разделов.
В первом разделе изложено понятие остатка, наибольшего общего делителя, алгоритма Евклида, расширенного алгоритма Евклида и применение алгоритма Евклида для решения линейных диофантовых уравнений и разложение чисел в цепные дроби.
Во втором разделе изложен алгебраический подход к делимости в кольцах. Рассмотрена область целостности, кольцо частных и евклидовы кольца.
В третьем разделе изложены теории вычетов по модулю и теория сравнений. Приведено применении теории остатков в криптографии (алгоритм RSA).
В четвертом разделе изложена теория мультипликативных функция и подробно рассмотрена функция Эйлера, с её свойствами.
В пятом разделе изложена китайская теорема об остатках для колец.
Единого «истинного» определения понятия «алгоритм» нет.
«Алгоритм — это всякая система вычислений, выполняемых по строго определённым правилам, которая после какого-либо числа шагов заведомо приводит к решению поставленной задачи.» (А. Колмогоров)
«Алгоритм — это точное предписание, определяющее вычислительный процесс, идущий от варьируемых исходных данных к искомому результату.» (А. Марков)
«Алгоритм есть формализованная последовательность действий (событий). Алгоритм может быть записан словами и изображен схематически. Практически любое неслучайное повторяемое действие поддается описанию через алгоритм.»
«Алгоритм — это система операторов, взятых из множества операторов некоторого исполнителя, которая полностью определяет некоторый класс алгоритмических процессов, то есть процессов, которые:
1. дискретны;
2. детерминированы;
3. потенциально конечны;
4. преобразовывают некоторые конструктивные объекты.
Между операторами алгоритма и операциями (элементарными действиями) алгоритмического процесса существует гомоморфное соответствие. Поэтому алгоритм следует также считать моделью алгоритмического процесса». (А. Копаев)
Формальные признаки алгоритмов
Различные определения алгоритма в явной или неявной форме содержат следующий ряд общих требований:
· детерминированность — определённость. В каждый момент времени следующий шаг работы однозначно определяется состоянием системы. Таким образом, алгоритм выдаёт один и тот же результат (ответ) для одних и тех же исходных данных. В современной трактовке у разных реализаций одного и того же алгоритма должен быть изоморфный граф. С другой стороны, существуют вероятностные алгоритмы, в которых следующий шаг работы зависит от текущего состояния системы и генерируемого случайного числа.
· понятность — алгоритм для исполнителя должен включать только те команды, которые ему (исполнителю) доступны, которые входят в его систему команд.
· завершаемость (конечность) — при корректно заданных исходных данных алгоритм должен завершать работу и выдавать результат за конечное число шагов. С другой стороны, вероятностный алгоритм может и никогда не выдать результат, но вероятность этого равна 0.
· массовость — алгоритм должен быть применим к разным наборам исходных данных.
Современное формальное определение алгоритма было дано в 30-50-х гг. XX века в работах Тьюринга, Поста, Чёрча (тезис Чёрча — Тьюринга), Н. Винера, А. А. Маркова.
Определение. Число d Z , делящее одновременно числа а , b , c , ... , k Z , называется общим делителем этих чисел. Наибольшее d с таким свойством называется наибольшим общим делителем. Обозначение: d = ( a , b , c , ..., k ) .
Теорема. Если ( a , b ) = d , то найдутся такие целые числа u и v , что d = au + bv .
Доказательство. Рассмотрим множество P = { au + bv u,v Z }. Очевидно, что P Z , а знатоки алгебры могут проверить, что P – идеал в Z . Очевидно, что a , b , 0 P . Пусть x , y P и y 0 . Тогда остаток от деления x на y принадлежит P . Действительно:
x = yq + r , 0 r < y ,
r = x – yq = ( au 1 + bv 1 ) – ( au 2 + bv 2 ) q = a ( u 1 – u 2 q )+ b ( v 1 – v 2 q ) P .
Пусть d P - наименьшее положительное число из P (призадумайтесь, почему такое имеется!). Тогда а делится на d . В самом деле, a = dq + r 1 , 0 r 1 < d , a P , d P , значит r 1 P , следовательно r 1 = 0. Аналогичными рассуждениями получается, что b делится на d , значит d - общий делитель a и b .
Далее, раз d P , то d = au 0 + bv 0 . Если теперь d 1 - общий делитель a и b , то d 1 | ( au 0 + bv 0 ), т.е. d 1 | d . Значит d d 1 и d - наибольший общий делитель.
Определение. Целые числа a и b называются взаимно простыми, если (a , b ) = 1.
Вспоминая свойство 1 из предыдущего пункта, легко заметить, что два числа a и b являются взаимно простыми тогда и только тогда, когда найдутся целые числа u и v такие, что au + bv = 1.
Пусть даны два числа a и b ; a 0, b 0, считаем, что a > b . Символом := в записи алгоритма обозначаем присваивание. Алгоритм:
1. Ввести a и b .
2. Если b = 0 , то Ответ: а . Конец .
a = bq 1 + r 1 b = r 1 q 2 + r 2 r 1 = r 2 q 3 + r 3 r 2 = r 3 q 4 + r 4 | 0 r 1 < b 0 r 2 < r 1 0 r 3 < r 2 0 r 4 < r 3 |
· · · · · · · · · | |
r n -3 = r n -2 q n -1 + r n -1 r n -2 = r n -1 q n + r n r n -1 = r n q n +1 | 0 r n -1 < r n -2 0 r n < r n -1 r n +1 = 0 |
3. Заменить r := "остаток от деления а на b ", а := b , b := r .
4. Идти на 2.
В современной буквенной записи, алгоритм Евклида выглядит так: a > b; a, b Z .
Имеем: b > r 1 > r 2 >... > r n > 0, следовательно процесс оборвется максимум через b шагов. Очень интересный и практически важный народохозяйственный вопрос о том, когда алгоритм Евклида работает особенно долго, а когда справляется с работой молниеносно, мы рассмотрим чуть позже. Давайте сейчас покажем, что r n = ( a , b ). Просмотрим последовательно равенства сверху вниз: всякий делитель а и b делит r 1 , r 2 ,..., r n . Если же просматривать эту цепочку равенств от последнего к первому, то видно, что r n | r n -1 , r n | r n -2 , и т.д., т.е. r n делит а и b . Поэтому r n - наибольший общий делитель чисел а и b .
Как и всякая добротно выполненная работа, алгоритм Евклида дает гораздо больше, чем от него первоначально ожидалось получить. Из его разглядывания ясно, например, что совокупность делителей а и b совпадает с совокупностью делителей ( a , b ). Еще он дает практический способ нахождения чисел u и v из Z (или, если угодно, из теоремы пункта 2) таких, что r n = au + bv = ( a, b ).
Действительно, из цепочки равенств имеем:
r n = r n -2 - r n -1 q n = r n -2 - ( r n -3 - r n -2 q n -1 ) q n = ...
(идем по цепочке равенств снизу вверх, выражая из каждого следующего равенства остаток и подставляя его в получившееся уже к этому моменту выражение)
... = au + bv = ( a , b ).
Пример. Пусть а = 525, b = 231. (ниже приводится запись деления уголком, и каждый раз то, что было в уголке, т.е. делитель, приписывается к остатку от деления с левой стороны, а остаток, как новый делитель, берется в уголок)