f –1(U) = О1 О2, О1 ∩ О2 = Æ,
где О1 и О2 – непустые открытые в f –1(U) множества.
Слой f –1(y) связен и f –1(y) Ì f –1(U), отсюда, f –1(y) содержится либо в О1, либо в О2 (по теореме 1.4). Рассмотрим произвольную точку х1ÎО1. Образ этой точки f (x1) = y1 Ì U. По условию, слой f –1(y1) связен и f –1(y1) Ì О1 О2 = f –1(U). Поскольку О1 ∩ О2 = Æ и х1ÎО1, следовательно (по теореме 1.4), f –1(y1) Ì О1. (Другими словами, если одна точка слоя принадлежит множеству О1, то и весь слой принадлежит этому множеству.)
Отсюда, так как точка х1 произвольная, то О1 = f –1( f (O1)). Аналогично доказывается, что О2 = f –1(f (O2)).
Отображение f замкнутое, тогда, по теореме 2.3, подотображение g = f : f –1(Oy) ® Oy также замкнутое. Таким образом, множества f (O1) = g (O1) и f (O2) = g (O2) будут непересекающимися открыто-замкнутыми в U и U = f (O1)
f (O2), т.е. окрестность U несвязна. Это противоречит выбору окрестности U. Для замкнутых отображений итоговую взаимосвязь между послойной связностью и связностью теперь можно выразить в форме следующей теоремы:
Теорема 2.3. Замкнутое отображение f : X→Y связно тогда и только тогда, когда оно послойно связно.
(Вытекает из следствия 2.1 и предложения 2.5).
Из последней теоремы и предложений 2.2 – 2.3 получаются такие следствия:
Следствие 2.3. Пусть отображение f : X→Y замкнутое, Z Í X замкнуто в Х. Подотображение g = f |Z : Z ® Y является связным тогда и только тогда, когда оно послойно связное.
Следствие 2.4. Пусть отображение f : X→Y замкнутое, T Í Y произвольное множество. Подотображение g = f | : f –1(T) ® T является связным тогда и только тогда, когда оно послойно связное.
Рассмотренные здесь свойства будут использованы в следующих пунктах в качестве основы для построения примеров связных и несвязных отображений.
2.3. Связь между связностью пространств
и отображений
Пусть пространство Y = {*} – одноточечное. В этом случае отображение f : X→Y непрерывно и является связным (несвязным) тогда и только тогда, когда пространство Х связно (несвязно), т.к. трубки и слои над пространством Y совпадают со всем пространством Х.
Этот факт позволяет строить многочисленные примеры связных и несвязных отображений. Для этого достаточно взять связные и несвязные пространства и отображение их в одноточечные множества.
Пример. Рассмотрим отображение f : [-1;1] ® R, для которого f (х) = 0 при любом х Î [-1;1]. Отображение f связно тогда и только тогда, когда слой f –1(y) над точкой y = 0 связен. Но f –1(0) = [-1;1] – связное множество. Причём, понятия трубки и слоя над точкой y = 0 совпадают, поэтому отображение f является связным и послойно связным.
Если отображение f : [-1;1] [2;3] ® R задано условием f (х) = 0 для любого х Î [-1;1] [2;3], то оно несвязно (послойно несвязно) над точкой y = 0 в силу несвязности трубки (слоя) f –1(0) = [-1;1] [2;3].
В рассмотренных примерах пространство Y является связным. Это условие и условие связности отображения f оказались необходимым и достаточным условием для связности пространства Х. Более того, имеет место
Теорема 2.4. Пусть сюръективное отображение f : X→Y непрерывно и связно. Пространство X является связным тогда и только тогда, когда пространство Y связное.
Доказательство. Необходимость. По теореме 1.5 (§1), если f : Х→Y непрерывное отображение, f (X) = Y и Х связно, то Y связно.
Достаточность. Пусть пространство Y связно. Предположим, что пространство Х несвязно. Тогда в Х найдутся такие непустые дизъюнктные открытые множества О1 и О2, что О1 О2 = Х. Допустим, что найдётся точка y Î
. Тогда в любой окрестности слоя f –1(y) содержаться как точки множества О1, так и точки множества О2. С другой стороны, f –1(y) Ì f –1(U), где трубка f –1(U) является связным множеством (в силу связности отображения f над точкой y) и должна содержаться либо в О1, либо в О2 (по теореме 1.4). Получили противоречие. Следовательно, = Æ,т.е.
и – непустые дизъюнктные замкнутые множества. Но f (О1) f (О2) = Y, значит, = f (О1) и = f (О2),т.е. эти множества открыто-замкнутые. Это противоречит связности пространства Y.
Таким образом, предположение о несвязности топологического пространства Х неверно, а верно то, что требуется доказать.
Другой связи между связностью пространств и связностью отображений может и не быть.
распадается на два непустых непересекающихся открытых в R множества, т.е. f –1(U) – несвязное множество. Таким образом, отображение f несвязно по определению.
Можно привести ещё пример такого рода. Пусть Oxy – прямоугольная декартова система координат. Рассмотрим кольцо ω с центром в начале координат и радиусами r = a, R = b (рис. 2). Пусть prX : ω → [– b; b] – проекция этого кольца на ось Ox, где prX (x; y) = х Î [– b; b] для любой точки (x; y) Î ω. Возьмём произвольную точку х Î (– a; a) Ì [– b; b]. Для любой окрестности U Ì (– a; a) точки х трубка является несвязной, т.к. состоит из двух частей A и B (рис. 2). Таким образом, проекция prX – является несвязным отображением.
Пусть, например, отображение f : R \ {0} ® R \ {0} задано формулой f (х) =
для любого х Î R \ {0} (рис. 3). Возьмём произвольную точку y Î R \ {0}. Для любой окрестности Oy Ì R \ {0} точки y найдётся связная окрестность U Í (0; + ¥) (или U Í (– ¥; 0)), трубка f –1(U) над которой связна (т.к. f –1(U) содержит часть ветви гиперболы или всю ветвь, которая связна и даже линейно связна).