Смекни!
smekni.com

Топологические пространства (стр. 5 из 8)

Пусть Х = [0; 1], Y = [0; 1]

[2; 3]. Рассмотрим проекцию

: X ´ Y ® Y (рис. 4), где prY (x; y) = y Î Y для любой точки (x; y) Î X ´ Y. Множества X ´ Y и Y являются несвязными, но проекция
– связное отображение (в силу теоремы 2.7, которая будет доказана в пункте 2.4).

Рассмотрим другие примеры связных отображений, связаные с непрерывными числовыми функциями.

Теорема 2.6. Непрерывная функция f : [a; b] R является связной тогда и только тогда, когда она монотонна, т.е. когда для любых точек х, х¢ Î [a; b], где х £ х¢, выполняется только одно из двух свойств: f (x) £ f (x¢ ) либо f (x) ³ f (x¢ ).

Доказательство. Необходимость. Функция f является отображением компактного множества в хаусдорфово пространство, поэтому она замкнута (в силу предложения 2.1). Тогда, по теореме 2.3, функция f является послойно связной.

Предположим, что f – не монотонна. Тогда найдутся такие точки х1, х2, х3 Î [a; b] и х1 < х2 < х3, для которых выполняется система неревенств:



.

Положим f (x1) = y1, f (x2) = y2, f (x3) = y3 и y3 ³ y1 (или y1 ³ y3). Тогда слой f –1(y3) является связным замкнутым подмножеством прямой y = y3 (рис. 5), т.е. отрезком. По теореме о промежуточном значении функции, существует точка х¢ Î [x1; x2) и f (x¢ ) = y3. В силу связности слоя f –1(y3), отрезок [А ; В] (см. рис. 5) должен целиком лежать в слое f –1(y3). Но точка (x2; y2), где x¢ < x2 < x3, не принадлежит прямой y = y3, поэтому слой f –1(y3) распадается на два непустых непересекающихся замкнутых в f –1(y3) множества. Это противоречит послойной связности функции f. Следовательно, f – монотонна.

Достаточность. Предположим, что функция f не является связной. Следовательно, f не является послойно связной (по теореме 2.3). Тогда существует такая точка y¢ Î R, что слой f –1(y¢) – несвязен, т.е. f –1(y¢) = О1

О2, где О1 и О2 – непустые дизъюнктные замкнутые в f –1(y¢) множества (рис. 6). Следовательно, найдутся такие точки x1 Î О1, x2 Î О2 и точка х, где x1 < x < x2 и x Ï О1, x Ï О2, что

.

Но это противоречит условию монотонности функции f. Значит, функция f является связной. ÿ

Данная теорема утверждает, что связные функции, непрерывные на отрезке, – это либо невозрастающие, либо неубывающие функции.

Этот факт обобщается на случай интервала (a; b). Если связная функция f определена на R с конечным числом точек разрыва, то её монотонность в общем виде нарушается, но область определения можно разбить на конечное число промежутков, на каждом из которых функция f будет монотонной.

2.4. Произведения пространств и проекции

Определение 17. Пусть Х и Y – топологические пространства с топологиями tХ и tY соответственно. Топологическим произведением этих пространств называется множество X ´ Y с топологией tХ ´ Y, образованной семейством всех множеств вида

U ´ V =

,

и их всевозможных объединений, где U Î tХ, V Î tY и

: X ´ Y ® Х,

: X ´ Y ® Y – это проекции, причём
(x; y) = x и
(x; y) = y. Множества вида U ´ V =
называются элементарными (или базисными) открытыми множествами.

Определение 18. Отображение f : XY называется открытым, если для каждого открытого множества О Í Х образ f (О) является открытым множеством в Y.

Лемма 2.2. Проекции

: X ´ Y ®Х и

: X ´ Y ® Y являются непрерывными открытыми отображениями.

Доказательство. Возьмём произвольное открытое в Х множество G. Прообраз этого множества

= G ´ Y по определению топологии произведения открыт в X ´ Y. Тогда проекции
и
будут непрерывными отображениями.

Пусть точка z Î X ´ Y; Oz – её произвольная окрестность (рис.7). Найдётся базисная окрестность

точки z, где U – окрестность точки
, V – окрестность точки
. Точка
является внутренней точкой множества U, а значит и множества
. Аналогично, точка
– внутренняя точка множества
. Следовательно, множества
и
открытые, и проекции
и
– открытые отображения. ÿ

Лемма 2.3. Пусть пространство Х является компактным. Тогда проекция

: X ´ Y ® Y является замкнутым отображением.