f = prY
где prY : Y ´ F® Y – проекция на сомножитель Y.
Теорема 2.8. Пусть отображение f : X ® Y послойно связное и параллельно пространству F. Тогда отображение f связное.
Доказательство. Отождествим Х с i(X). Тогда f можно отождествить с подотображением проекции prY : Y ´ F® Y. Пусть y Î Y – фиксированная точка и Oy – её произвольная окрестность. Предположим, что для любой связной окрестности U Í Oy точки у трубка f –1(U) несвязна. Положим f –1(U) = О1 О2, где О1, О2 – непустые дизъюнктные открытые в f –1(U) множества и U Í Oy – некоторая фиксированная связная окрестность точки y.
Пусть х Î f –1(y). Тогда х Î О1 или х Î О2. Допустим х Î О1. Найдётся такое открытое в Y ´ F множество G1, что О1 = G1
х Î
Так как множество f –1(y) – связное по условию, то х Î f –1(y) Í О1.
Пусть х¢ – произвольная точка из (Vx´ W)
f –1(f (x¢ )) Í О1.
Следовательно, О1 содержит всякий слой f –1(y¢ ), где y¢ Î Vx (в силу послойной связности f ).
Таким образом, для каждой точки х Î О1 найдётся окрестность VxÍ U точки f (x), что х Î f –1(Vx) Í О1. Поэтому
Следовательно, множество
2.5. Послойное произведение отображений
Определение 20. Пусть f : X ® Y и g : Z ® Y – непрерывные отображения. Послойным произведением f ´ g этих отображений называется отображение h : Т ® Y, где
и
Из данного определения вытекает смысл названия такого определения:
для любой точки y Î Y.
Таким образом, в силу следствия 2.5, становится очевидной следующая теорема:
Теорема 2.9. Пусть отображения f : X ® Y и g : Z ® Y послойно связные. Тогда произведение h = f ´ g также является послойно связным отображением.
Лемма 2.4. Пусть f, g : X ® Y непрерывные отображения в хаусдорфово пространство Y. Тогда множество Т = {x Î X : f (x) = g(x)} является замкнутым в Х.
Доказательство. Докажем, что множество Х \ Т открытое, т.е. для любой точки x Î X найдётся такая окрестность Ох точки х, что Ох Ì Х \ Т.
Возьмём произвольную точку x Î X \ Т. Тогда f (x) = y1 Î Y, g(x) = y2 Î Y. Так как пространство Y хаусдорфово, то существуют окрестности Оy1 точки y1 и Оy2 точки y2 такие, что
Оy1
Отображения f и g – непрерывные, поэтому множества f –1(Oy1), g–1(Oy2) – открытые в Y и x Î f –1(Oy1), x Î g–1(Oy2). Рассмотрим окрестность Ох = f –1(Oy1)
Лемма 2.5. Если пространства Х и Y компактные, то и их произведение X ´ Y является компактным множеством.
Доказательство. Пусть х – произвольная фиксированная точка пространства Х, и пусть Ω =
Он гомеоморфен связному пространству Y, поэтому
Ω(х) =
(где Ua(x) множество, содержащее некоторые точки слоя над точкой x) слоя
U(x) =
есть открытое множество, содержащее слой
Теорема 2.10. Пусть f : X ® Y и g : Z ® Y – связные отображения компактных пространств X и Z в хаусдорфово пространство Y. Тогда произведение h = f ´ g также является связным отображением компактного пространства Т.
Доказательство. По определению послойного произведения,
Таким образом, в силу теорем 2.9 и 2.3, отображение h = f ´ g является связным.