Смекни!
smekni.com

Топологические пространства (стр. 1 из 8)

§1. Топологические пространства

(предварительные сведения)

1.1. Непрерывные отображения топологических

пространств

Пусть Х и Y топологические пространства.

Определение 1. Отображение f : Х→Y называется непрерывным, если у всякого множества О, открытого в пространстве Y, полный прообраз f –1(О) открыт в пространстве Х.

Замечание 1. Для любого подмножества А пространства Y и отображения f: XY справедливо следующее равенство:

(1).

Теорема 1.1. Отображение f : XY является непрерывным тогда и только тогда, когда у всякого множества F, замкнутого в Y, полный прообраз f 1(F) замкнут в Х.

Доказательство. Необходимость. Пусть отображение f : XY является непрерывным, т.е. для любого множества О, открытого в Y, прообраз f –1(O) открыт в Х, и пусть F произвольное замкнутое в Y множество. Тогда множество CF открыто в Y, и множество

открыто в Х, в силу непрерывности отображения f и равенства (1). Следовательно, множество f –1(F) замкнуто в Х.

Достаточность. Пусть для любого множества F, замкнутого в Y, полный прообраз f 1(F) замкнут в Х. Рассмотрим произвольное открытое в Y множество О. Тогда множество CO будет замкнутым в Y. Поэтому

замкнутое в Х множество. Следовательно, множество
открыто в Х. Таким образом, для любого множества О, открытого в Y, полный прообраз
открыт в Х и отображение f : XY непрерывное по определению. €

1.2. Связность топологических пространств

Определение 4. Топологическое пространство Х называется несвязным, если его можно разбить на два непустых непересекающихся открытых множества:

Х = О1

О2.

Определение 5. Пространство Х называется связным, если такого разбиения не существует.

Заметим, что если несвязное пространство Х разбито на два непустых открытых множества О1 и О2, не имеющих общих точек, то О1 = CO2 и O2 = CO1. Поэтому можно дать другое определение связного пространства:

Определение 6. Топологическое пространство Х называется связным, если в нём одновременно открытым и замкнутым множеством является лишь само пространство или пустое множество.

Определение 7. Множество Н в топологическом пространстве Х называется связным, если оно является связным пространством относительно индуцированной топологии.

Теорема 1.2. Для топологического пространства Х следующие условия эквивалентны:

(1) существуют непустые открытые множества О1и О2, для которых О1О2 = Æ и О1

О2 = Х;

(2) существуют непустые замкнутые множества F1и F2, для которых F1F2 = Æ и F1

F2 = Х;

(3) в Х существует нетривиальное открыто-замкнутое множество G;

(4) существует непрерывная сюръективная функция φ : Х ® {1, 2}.

Доказательство. Из (1) следует (2). Пусть О1 и О2 непустые открытые множества, для которых О1О2 = Æ и О1

О2 = Х. Рассмотрим множества F1 = СО1 и F2 = СО2. Они являются непустыми замкнутыми множествами, причём F1F2 = Æ и F1
F2 = Х.

Из (2) следует (3). Пусть F1 и F2 непустые замкнутые множества, для которых F1F2 = Æ и F1

F2 = Х. Рассмотрим множество G = F1 Ì Х. Множество F1 замкнутое по условию и открытое, как дополнение до замкнутого множества F2 (F1 = CF2). Поэтому множество G = F1 является нетривиальным открыто-замкнутым множеством в Х.

Из (3) следует (4). Пусть G нетривиальное открыто-замкнутое множество в Х. Тогда множество Q = CG тоже нетривиальное открыто-замкнутое в Х.

Рассмотрим функцию φ : Х ® {1, 2}, при которой

φ(х) =

Функция φ является непрерывной и сюръективной, т.к. для любых элементов 1 и 2 множества {1, 2} прообразы их соответственно равны множествам G и Q, открытым в Х.

Из (4) следует (1). Пусть φ : Х ® {1, 2} – непрерывная сюръективная функция и пусть множество M = {1, 2}, т.е. φ(Х) = М. Множества A = {1} и B = {2} – непустые, непересекающиеся открытые в М и

. Функция φ сюръективная, поэтому справедливо следующее равенство:

Х = φ –1(М) = φ –1(А

В) = φ –1(А)
φ –1(В),

причём φ –1(А) и φ –1(В) непустые непересекающиеся множества. В силу того, что функция φ непрерывная, множества О1 = φ –1(А) и О2 = φ –1(В) непустые, непересекающиеся открытые в Х и Х = О1

О2 . €

Теорема 1.3. Пусть в топологическом пространстве Х даны два дизъюнктных замкнутых множества F1 и F2и непустое связное множество М, содержащееся в объединении F1

F2. Тогда М содержится только в одном из множеств, входящих в объединение, т.е. либо в F1, либо в F2.

Доказательство. Пусть F1 и F2 дизъюнктные замкнутые в Х множества и непустое связное множество М Í F1

F2. Тогда

М = (МF1)

(M F2).

Так как множества F1 и F2 замкнутые в Х, то множества МF1 и M F2 замкнутые в М. Но множество М связно, т.е. его нельзя разбить на два непустых непересекающихся замкнутых множества, поэтому одно из множеств, например M F2, пустое. Тогда

М = МF1 Í F1. €

Аналогично доказывается

Теорема 1.4. Если связное множество М содержится в объединении двух дизъюнктных открытых множеств О1 и О2 топологического пространства Х, то оно целиком содержится только в одном из множеств, входящих в объединение.

Теорема 1.5. Пусть f : Х→Y непрерывное отображение и f (X) = Y. Тогда если Х связно, то Y связно.

Доказательство от противного. Предположим, что пространство Y несвязно. Тогда оно разбивается на два непустых открытых дизъюнктных множества

Y = O1

O2.

В силу того, что f непрерывное отображение и f (X) = Y, прообразы G1 = f –1(O1) и G2 = f –1(O2) будут непустыми дизъюнктными открытыми множествами, которые в сумме дают всё пространство Х, что противоречит его связности. €

1.3. Компактность топологических пространств

Определение 8. Топологическое пространство называется компактным, если всякое покрытие этого пространства открытыми множествами содержит конечное подпокрытие.

Определение 9. Множество А в топологическом пространстве Х называется компактным, если оно компактно в индуцированной топологии как подпространство.

Теорема 1.6. Подмножество А топологического пространства Х компактно тогда и только тогда, когда из любого его покрытия множествами, открытыми в Х, можно выбрать конечное подпокрытие.

Теорема 1.7. Замкнутое подмножество А компактного пространства Х компактно.