Смекни!
smekni.com

Точные методы решения систем линейных алгебраических уравнений (СЛАУ) (стр. 2 из 2)

{

Close ();

}

// ---------------------------------------------------------------------------

void __fastcall TForm1:: RadioButton2Click (TObject *Sender)

{

ButtonGauss->Visible=false;

ButtonHolec->Visible=true;

}

// ---------------------------------------------------------------------------

void __fastcall TForm1:: RadioButton1Click (TObject *Sender)

{

ButtonGauss->Visible=true;

ButtonHolec->Visible=false;

}

// ---------------------------------------------------------------------------

void __fastcall TForm1:: ButtonHolecClick (TObject *Sender)

{

Memo1->Lines->Clear ();

for (int i=0; i<n; i++)

{

for (int j=0; j<n+1; j++)

{

TryStrToFloat (StringGrid1->Cells [j] [i],A [i] [j]);

}

}

for (int i=0; i<n; i++)

{

for (int j=0; j<n+1; j++)

{

if (A [i] [j] ==NULL)

{

ShowMessage ("Ошибка! Есть пустые ячейки!");

fl1=true;

i=n;

break;

}

}

}

Memo1->Lines->Add (" МЕТОД ХОЛЕЦКОГО: ");

Memo1->Lines->Add ("");

if (! fl1) {

Y=new float [n] ;

for (int i=0; i<n; i++)

{

Nig [i] [0] =A [i] [0] ;

Ver [0] [i] =A [0] [i] /Nig [0] [0] ;

}

for (int i=0; i<n; i++)

{

for (int j=0; j<n; j++)

{

if (i<j)

{

Nig [i] [j] =0;

}

if (i>j)

{

Ver [i] [j] =0;

}

}

}

for (int i=1; i<n; i++)

{

Ver [i] [i] =1;

}

for (int i=1; i<n; i++)

{

for (int j=i; j<n; j++)

{

for (int k=0; k<i; k++)

{

p=p+Nig [j] [k] *Ver [k] [i] ;

}

Nig [j] [i] =A [j] [i] -p;

p=0;

}

for (int j=i+1; j<n; j++)

{

for (int k=0; k<i; k++)

{

p=p+Nig [i] [k] *Ver [k] [j] ;

}

Ver [i] [j] =1/Nig [i] [i] * (A [i] [j] -p);

p=0;

}

}

for (int i=0; i<n; i++)

{

p=0;

for (int j=0; j<i; j++)

{

p=p+Nig [i] [j] *Y [j] ;

}

Y [i] = (A [i] [n] -p) /Nig [i] [i] ;

}

for (int i=n-1; i>=0; i--)

{

p=0;

for (int j=n-1; j>i; j--)

{

p=p+Ver [i] [j] *X [j] ;

}

X [i] = (Y [i] -p) /Ver [i] [i] ;

}

String s="";

Memo1->Lines->Add ("Нижняя треугольная матрица: ");

for (int i=0; i<n; i++)

{

s="";

for (int j=0; j<n+1; j++)

{

s+=FloatToStr (Nig [i] [j]) +" ";

}

Memo1->Lines->Add (s);

}

Memo1->Lines->Add ("Верхняя треугольная матрица: ");

for (int i=0; i<n; i++)

{

s="";

for (int j=0; j<n+1; j++)

{

s+=FloatToStr (Ver [i] [j]) +" ";

}

Memo1->Lines->Add (s);

}

Memo1->Lines->Add ("");

Memo1->Lines->Add ("Корни СЛАУ равны: ");

for (int i=0; i<n; i++)

{

if (X [i] ! =NULL)

{

Memo1->Lines->Add ("x"+IntToStr (i+1) +" = "+FloatToStr (X [i]));

}

else

{

Memo1->Lines->Add ("Нет корней!");

break;

}

}

}

}

// ---------------------------------------------------------------------------

Результаты расчета:

МЕТОД ГАУССА: МЕТОД ХОЛЕЦКОГО:
На первом этапе матрица приводится к ступенчатому виду: 1 - 2,25 0,5 0,5 0 1 6 4 0 0 1 0,625 На втором этапе вычисляются корни СЛАУ исходя из ступенчатой системы: x1 = 0,75 x2 = 0,25 x3 = 0,625 Матрица разбивается на верхнюю и нижнюю треугольные матрицы. Нижняя треугольная матрица: 81 0 0 0 45 24,9999980926514 0 0 45 10,0000019073486 8,99999618530273 0 Верхняя треугольная матрица: 1 - 0,555555582046509 0,555555582046509 0 0 1 0,400000095367432 0 0 0 1 0 Корни СЛАУ равны: x1 = 6 x2 = - 5 x3 = - 4